Skip to main content

Uniqueness of Solutions in Mean Field Games with Several Populations and Neumann Conditions

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 28))

Abstract

We study the uniqueness of solutions to systems of PDEs arising in Mean Field Games with several populations of agents and Neumann boundary conditions. The main assumption requires the smallness of some data, e.g., the length of the time horizon. This complements the existence results for MFG models of segregation phenomena introduced by the authors and Achdou. An application to robust Mean Field Games is also given.

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). They are partially supported by the research projects “Mean-Field Games and Nonlinear PDEs” of the University of Padova and “Nonlinear Partial Differential Equations: Asymptotic Problems and Mean-Field Games” of the Fondazione CaRiPaRo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achdou, Y., Bardi, M., Cirant, M.: Mean field games models of segregation. Math. Models Methods Appl. Sci. 27, 75–113 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ambrose, D.M.: Strong solutions for time-dependent mean field games with non-separable Hamiltonians. J. Math. Pures Appl. (9) 113, 141–154 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bardi, M.: Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media 7, 243–261 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bardi, M., Feleqi, E.: Nonlinear elliptic systems and mean field games. Nonlinear Differ. Equ. Appl. 23, 23–44 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bardi, M., Fischer, M.: On non-uniqueness and uniqueness of solutions in some finite-horizon mean field games. ESAIM Control Optim. Calc. Var. https://doi.org/10.1051/cocv/2018026

  6. Bardi, M., Priuli, F.S.: Linear-quadratic N-person and mean-field games with ergodic cost. SIAM J. Control Optim. 52, 3022–3052 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bauso, D., Tembine, H., Basar, T.: Robust mean field games. Dyn. Games Appl. 6, 277–303 (2016)

    Article  MathSciNet  Google Scholar 

  8. Briani, A., Cardaliaguet, P.: Stable solutions in potential mean field game systems. Nonlinear Differ. Equ. Appl. 25(1), 26 pp., Art. 1 (2018)

    Google Scholar 

  9. Cardaliaguet, P.: Notes on Mean Field Games (from P-L. Lions’ lectures at Collège de France) (2010)

    Google Scholar 

  10. Cardaliaguet, P., Porretta, A., Tonon, D.: A segregation problem in multi-population mean field games. Ann. I.S.D.G. 15, 49–70 (2017)

    Google Scholar 

  11. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications I - II (Springer, New York, 2018)

    MATH  Google Scholar 

  12. Cirant, M.: Multi-population mean field games systems with Neumann boundary conditions. J. Math. Pures Appl. 103, 1294–1315 (2015)

    Article  MathSciNet  Google Scholar 

  13. Cirant, M.: Stationary focusing mean-field games. Commun. Partial Differ. Equ. 41, 1324–1346 (2016)

    Article  MathSciNet  Google Scholar 

  14. Cirant, M., Tonon, D.: Time-dependent focusing mean-field games: the sub-critical case. J. Dyn. Differ. Equ. (2018). https://doi.org/10.1007/s10884-018-9667-x

  15. Cirant, M., Verzini, G.: Bifurcation and segregation in quadratic two-populations mean field games systems. ESAIM Control Optim. Calc. Var. 23, 1145–1177 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gomes, D., Saude, J.: Mean field games models: a brief survey. Dyn. Games Appl. 4, 110–154 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gomes, D.A., Mohr, J., Souza, R.R.: Continuous time finite state mean field games. Appl. Math. Optim. 68, 99–143 (2013)

    Article  MathSciNet  Google Scholar 

  18. Gomes, D., Nurbekyan, L., Pimentel, E.: Economic models and mean-field games theory (IMPA Mathematical Publications, Instituto Nacional de Matemática Pura e Aplicada , Rio de Janeiro, 2015)

    Google Scholar 

  19. Gomes, D., Pimentel, E., Voskanyan, V.: Regularity Theory for Mean-Field Game Systems (Springer, New York, 2016)

    Book  Google Scholar 

  20. Gomes, D., Nurbekyan, L., Prazeres, M.: One-dimensional stationary mean-field games with local coupling. Dyn. Games Appl. 8, 315–351 (2018)

    Article  MathSciNet  Google Scholar 

  21. Guéant, O.: A reference case for mean field games models. J. Math. Pures Appl. (9) 92, 276–294 (2009)

    Article  MathSciNet  Google Scholar 

  22. Guéant, O., Lasry, J.-M., Lions, P.-L.: Mean field games and applications, in Carmona, R.A., et al. (eds.) Paris-Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Mathematics, 2003 (Springer, Berlin, 2011), pp. 205–266

    Chapter  Google Scholar 

  23. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 , 221–251 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized 𝜖-Nash equilibria. IEEE Trans. Automat. Control 52 , 1560–1571 (2007)

    Article  MathSciNet  Google Scholar 

  25. Huang, M., Caines, P.E., Malhamé, R.P.: An invariance principle in large population stochastic dynamic games. J. Syst. Sci. Complex. 20, 162–172 (2007)

    Article  MathSciNet  Google Scholar 

  26. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, vol. 23 (American Mathematical Society, Providence, 1968)

    Google Scholar 

  27. Lasry, J.-M., Lions, P.-L.: Jeux á champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343, 619–625 (2006)

    Article  Google Scholar 

  28. Lasry, J.-M., Lions, P.-L.: Jeux á champ moyen. II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris 343, 679–684 (2006)

    Article  Google Scholar 

  29. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  Google Scholar 

  30. Lieberman, G.M.: Second Order Parabolic Differential Equations (World Scientific Publishing Co., Inc., River Edge, 1996)

    Book  Google Scholar 

  31. Lions, P.-L.: Lectures at Collège de France 2008-9

    Google Scholar 

  32. Moon, J., Başar, T.: Linear quadratic risk-sensitive and robust mean field games. IEEE Trans. Automat. Control 62(3), 1062–1077 (2016)

    Article  MathSciNet  Google Scholar 

  33. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations (Prentice-Hall, Inc., Englewood Cliffs, 1967)

    MATH  Google Scholar 

  34. Schelling, T.C.: Micromotives and Macrobehavior (Norton, New York, 1978)

    Google Scholar 

  35. Tran, H.V.: A note on nonconvex mean field games. Minimax Theory Appl. (2018, to appear). arXiv:1612.04725

    Google Scholar 

  36. Wang, B.-C., Zhang, J.-F.: Mean field games for large-population multiagent systems with Markov jump parameters. SIAM J. Control Optim. 50(4), 2308–2334 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martino Bardi .

Editor information

Editors and Affiliations

Appendix: A Comparison Principle

Appendix: A Comparison Principle

The next result is known but we give its elementary proof for lack of a precise reference.

Proposition 3.1

Assume \(\Omega \subseteq {\mathbb R}^d\) is bounded with C 2 boundary, \(H : \overline \Omega \times {\mathbb R}^d\) is of class C 1 with respect to p, and \(u, v : [0,T]\times \overline \Omega \to {\mathbb R}\) are C 1 in t and C 2 in x and satisfy

$$\displaystyle \begin{aligned} \left\{ \begin{array}{ll} - \partial_t u - \Delta u + H(x,Du) \leq - \partial_t v - \Delta v + H(x,Dv) , & \mathit{in} \quad (0,T)\times\Omega , \\ \\ \partial_n u \leq \partial_n v , & \mathit{on}\quad (0,T)\times\partial \Omega , \\ \\ u(T,x) \leq v(T,x) & \mathit{in}\quad \Omega. \end{array} \right. \end{aligned}$$

Then u  v in \([0,T]\times \overline \Omega \).

Proof

Let us assume first that

$$\displaystyle \begin{aligned} - \partial_t (u-v) - \Delta (u-v) + H(x,Du) - H(x, Dv) < 0 \quad \mbox{ in } [0,T)\times\Omega , \end{aligned}$$

n(u − v) < 0 on [0, T) ×  Ω, and (u − v)(T, x) ≤ δ. Then the maximum of u − v can be attained only at t = T, which implies u − v ≤ δ in \([0,T]\times \overline \Omega \).

Now take \(g\in C^2(\overline \Omega )\) such that Dg(x) = n(x) for all x ∈  Ω and define

$$\displaystyle \begin{aligned} v_\varepsilon(t,x):= v(t,x)+\varepsilon(T-t)C+\varepsilon g(x). \end{aligned}$$

Then n(u − v ε) =  n(u − v) − ε < 0 and (u − v ε)(T, x) ≤ εg. Moreover, by Taylor’s formula, for some q with |q|≤∥Dg,

$$\displaystyle \begin{aligned}\displaystyle - \partial_t (u-v_\varepsilon) - \Delta (u-v_\varepsilon) + H(x,Du) - H(x, Dv_\varepsilon) = \\\displaystyle - \partial_t (u-v) - \Delta (u-v) + H(x,Du) - H(x, Dv) -\varepsilon (C -\Delta g+D_pH(x,q)\cdot Dg)\,{<}\,-\varepsilon \end{aligned} $$

if C is chosen large enough. Then

$$\displaystyle \begin{aligned} u\leq v_\varepsilon + \varepsilon\|g\|{}_\infty \leq v +\varepsilon(TC+ 2\|g\|{}_\infty) \end{aligned}$$

and we conclude by letting ε → 0. □

Remark 3.1

The result remains true if  Ω is merely C 1 and satisfies an interior sphere condition. This can be proved in a less direct way by linearizing the inequality for u − v and then using the parabolic Strong Maximum Principle and the parabolic version of Hopf’s Lemma for linear equations (see, e.g., [33]).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bardi, M., Cirant, M. (2018). Uniqueness of Solutions in Mean Field Games with Several Populations and Neumann Conditions. In: Cardaliaguet, P., Porretta, A., Salvarani, F. (eds) PDE Models for Multi-Agent Phenomena. Springer INdAM Series, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-01947-1_1

Download citation

Publish with us

Policies and ethics