Advertisement

The Liquefaction Potential of Sandy Silt Layers Using the Correlation Between Penetrometer Test and SPT Test

Conference paper
  • 297 Downloads
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

Liquefaction is a hazardous and temporary phenomenon by which a soil saturated with water loses some or all of its resistance. The undrained conditions and a cyclic load increase the pores water pressure inside the soil and therefore a reduction of the effective stress.

Nowadays many semi-empirical methods are used to introduce a proposition to evaluate the liquefaction’s potential using the in-situ test results. The objective of this paper is to study and compare the results of this semi-empirical methods and the numerical modelling results using the finite element methods.

The study is based on the data of the Pressuremeter test which be correlated to the Standard Penetrometer Test using the experimental results of the Casablanca-Tangier High-Speed Line exactly between PK 116 + 450 and PK 116 + 950 and near of Moulay Bousselham city. It belongs to the Drader- Soueir basin region which is located in the North-West of Morocco.

This region had a specific soil’s formation, the first 50 m are characterized by the existence of sand layers alternating with layers of clay. These formations are very loose and saturated which suggests the possibility of soil liquefaction.

We present and discuss the results of applying the Idriss method and the Youd method in the evaluation of liquefaction susceptibility.

Apart from the previous empirical analysis to evaluate the liquefaction potential, numerical modelling is performed in this study.

Keywords

Liquefaction Potential Standard Penetration Test Results (SPT) Pressuremeter Tests Youden Method Liquefaction Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pecker, A.: Livre de Dynamique des sols, Presse de l’école nationale des Ponts et Chaussées (1984)Google Scholar
  2. 2.
    An Introductory QUAKE/W Example, GEO-SLOPE International Ltd, Calgary, Alberta, Canada. www.geo-slope.com
  3. 3.
    Borowiec, A., Maciejewski, K.: Assessment of Susceptibility to Liquefaction of Saturated Road Embankment Subjected to Dynamic Loads Studia Geotechnica et Mechanica, Vol. XXXVI, No. 1 (2014)  https://doi.org/10.2478/sgem-2014-0002CrossRefGoogle Scholar
  4. 4.
    Arab, A., Sadek, M., Shahrour, I.: Influence de la densité relative sur la résistance au cisaillement cyclique des sables. In: MATEC Web of Conferences 149, 02034, CMSS-2017 (2018).  https://doi.org/10.1051/matecconf/201814902034CrossRefGoogle Scholar
  5. 5.
    Boulanger, R.W., Idriss, I.M.: State normalization of penetration resistance and the effect of overburden stress on liquefaction resistance. In: Proceedings, 11th International Conference on Soil Dynamics and Earthquake Engineering and 3rd International Conference on Earthquake Geotechnical Engineering, University of California, Berkeley, CA (2004)Google Scholar
  6. 6.
    Boulanger, R.W.: High overburden stress effects in liquefaction analyses. J. Geotech. Geoenviron. Eng. ASCE 129(12), 1071–1082 (2003)CrossRefGoogle Scholar
  7. 7.
    Castelli, F., Cavallaro, A., Grasso, S., Maugeri, M.: Soil liquefaction and risk analysis from in situ tests for the city of Trapani (Italy). In: Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (2001)Google Scholar
  8. 8.
    Castelli, F., Lentini, V.: SPT-based evaluation of soil liquefaction risk. In: Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (2010)Google Scholar
  9. 9.
    Zhang, G., Robertson, P.K., Brachman, R.W.I.: Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test, Project Engineer, EBA Engineering Consultants Ltd., 14940-123 Ave., Edmonton AB, Canada T5 V 1B4. J. Geotech. Geoenvironmental Eng. © ASCE (2004)Google Scholar
  10. 10.
    Golesorkhi, R.: Factors influencing the computational determination of earthquake-induced shear stresses in sandy soils. Ph.D. thesis, University of California, Berkeley, 395 p. (1989)Google Scholar
  11. 11.
    Gonin, H., Vandangeon, P., Lafeuillade, M.-P.: Etude sur les corrélations entre le standard et le pressiomètre penetration test, Rev. Franç. Géotech. ho 58, pp. 67–78 fianvier L992Google Scholar
  12. 12.
    Idriss, I.M., Boulanger, R.W.: Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn. Earthq. Eng. 26(2006), 115–130 (2004)Google Scholar
  13. 13.
    Idriss, I., Sun, J.: User Manual for SHAKE 91. Technical report, Center for Geotechnical Engineering Modeling, Departament of Civil Engineering, University of California, Davis. U.S.A (1992)Google Scholar
  14. 14.
    Idriss, I.M.: An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential. In: Proceedings, TRB Workshop on New Approaches to Liquefaction, January, Publication No. FHWA-RD-99- 165. Federal Highway Administration (1999)Google Scholar
  15. 15.
    Andrade, J.E.: A predictive framework for liquefaction instability. Géotechnique 59(8), 673–682 (2009).  https://doi.org/10.1680/geot.7.00087CrossRefGoogle Scholar
  16. 16.
    Karnik, V.: Seismicity of the European area. Part I., Prague and Dordrecht-Holland, 364 p. (1969)Google Scholar
  17. 17.
    Kayen, R.E., Mitchell, J.K., Seed, R.B., Lodge, A., Nishio, S., Coutinho, R.: Evaluation of SPT-, CPT-, and shear wave-based methods for liquefaction potential assessment using Loma Prieta data. In: Proceedings, 4th Japan-U.S. Workshop on Earthquake-Resistant Des. of Lifeline Fac. and Countermeasures for Soil Liquefaction, vol. 1, pp. 177–204 (1992)Google Scholar
  18. 18.
    Kramer, S.L.: Geotechnical Earthquake Engineering Prentice, Hall Upper Saddle River, New Jersey, pp. 274–275 (1996)Google Scholar
  19. 19.
    Le règlement de construction parasismique 2000-version 2011, Ministre de l’habitat et la politique de la villeGoogle Scholar
  20. 20.
    Liao, S.S.C., Whitman, R.V.: A catalog of liquefaction and Non-liquefaction occurrences During Earthquakes, Department of civil Engineering, Massachusetts institute of technology, Cambridge, MA, 117 p. (1986)Google Scholar
  21. 21.
    Matasovic, N.: Seismic response of composite horizontally-layered soil deposits. Ph.D. thesis, University of California, Los Angeles (1992)Google Scholar
  22. 22.
    Bensoula, M., Missoum, H., Bendani, K.: Critical undrained shear strength of loose-medium sand-silt mixtures under monotonic loadings. J. Theor. Appl. Mech. 53(2), 331–344 (2015).  https://doi.org/10.15632/jtam-pl.53.2.331
  23. 23.
    Rahhal, M.E.: Comprendre les méthodes d’évaluation du potentiel de liquéfaction des sols. In: Proceedings of the 4th Canadian Conference on Geohazards: From Causes to Management. Presse de l’Université Laval, Québec, 594 p. (2008)Google Scholar
  24. 24.
    National Center for Earthquake Engineering Research (NCEER). In: Youd, T.L., Idriss, I.M. (eds.) Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical report NCEER-97-022 (1997)Google Scholar
  25. 25.
    Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67–94 (1959)Google Scholar
  26. 26.
    Touil, N.: Thèse sous le thème «Analyse expérimentale et numérique du potentiel de liquéfaction des sols sableux de Tanger» Université ABDELMALEK SAADI (2012)Google Scholar
  27. 27.
    Yagiz, S., Akyol, E., Sen, G.: Relationship between the standard penetration test and the pressuremeter test on sandy silty clays: a case study from Denizli. Bull. Eng. Geol. Environ. 67, 405–410 (2008).  https://doi.org/10.1007/s10064-008-0153-2CrossRefGoogle Scholar
  28. 28.
    Ahmad, S., Khan, M.Z., Anwar, A., Mohd, S., Husain, A.: Assessment of Liquefaction Potential of Cohesionless Soil by Semi-Empirical: SPT- Based Procedure, ISSN (Online), vol. 3, Issue 10, pp. 2347–2812 (2015)Google Scholar
  29. 29.
    Maychou, S.: Étude morphostructurale et cartographie SIG du Rharb Septentrional et du Prérif (Maroc). Analyse sismotectonique et modélisation de la déformation de la région de Moulay Bousselham, 2009, l’Université Chouaïb Doukkali et L’Université Bordeaux 1Google Scholar
  30. 30.
    Seed, B., Idriss, I.M.: Ground motions and soils liquefaction during earthquakes. Technical report, Earthquake Engineering Research Institute (1982)Google Scholar
  31. 31.
    Seed, H.B., Idriss, I.M.: Simplified procedure for evaluating soil Liquefaction potential. J. Soil Mech. Found. Div. ASCE 97(SM9), 1249–1273 (1971)Google Scholar
  32. 32.
    Touijrate, S., Baba, K., Ahatri, M., Bahi, L.: Validation and verification of semi-empirical methods for evaluating liquefaction using finite element method. In: MATEC Web of Conferences 149, CMSS-2017 02028 (2018).  https://doi.org/10.1051/matecconf/201814902028CrossRefGoogle Scholar
  33. 33.
    Cherkaoui, T.-E., Asebriy, L.: Le risque sismique dans le Nord du Maroc, Trav. Inst. Sci. Rabat, sér. Géol. & Géogr. phys., n° 21, pp. 225–232 (2003)Google Scholar
  34. 34.
    Terzaghi et Peck: Mécanique des sols appliquée aux travaux publics et aux bâtiments. Dunod, Paris (1961)Google Scholar
  35. 35.
    Youd, T., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Chistian, J.T.: Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshop on evaluation of liquefaction resistance of soils. J. Geotech. Geoenvironmental Eng. ASCE, 127(10) (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.3GIE Laboratory, Mohammadia Engineering SchoolMohammed V UniversityRabatMorocco
  2. 2.GCE Laboratory, High School of Technology-SaléMohammed V UniversityRabatMorocco

Personalised recommendations