Advertisement

Liquefaction Potential Analysis and Numerical Modeling - Container Terminal of Algiers Port

Conference paper
  • 295 Downloads
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

The aim of the present paper is to study the liquefaction potential of the container terminal of Algiers port site and perform a numerical modeling of its dynamic response under Boumerdes earthquake. The soil liquefaction potential was analyzed using two methods. The first is an analytical method requiring a series of observations and empirical correlations carried out from in situ investigations, namely the SPT (Standard Penetration Test). In addition, the liquefaction safety factor obtained was verified according to the recommendations of the Eurocode rules and the Algerian earthquake regulation. The MSF coefficient was determined to obtain a corrected CSR value corresponding to a seismic motion with magnitude of 7 on the Richter scale. The second analysis is carried out using PLAXIS 2D (version 2016) software using soil parameters determined from standard triaxial and œdometric tests. The numerical modeling was established in order to study dynamic response and verify the liquefaction potential of Algiers port under Boumerdes earthquake taking into account the presence of the container static load.

Keywords

Container Terminals Liquefaction Potential Boumerdes Earthquake Cyclic Stress Ratio (CSR) Magnitude Scaling Factor (MSF) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Boulanger, R.W., Idriss, I.M.: Liquefaction susceptibility criteria for silts and clays. J. Geotech. Geoenviron. Eng. 132(11), 1413–1426 (2006). 10.1061/(ASCE)1090-0241(2006)132:11(1413)CrossRefGoogle Scholar
  2. Boulifa, W., Mehenni, M.A., Chikhaoui, M.: Amélioration de sol du port d’Alger par colonnes ballastées. Travaux publics. Géotechnique, Faculté de génie civil. Université des Sciences et de la Technologie Houari Boumediene USTHB. Usthb.dz, Bab Ezzouar, Alger, Algérie (2017)Google Scholar
  3. Casagrande, A.: Liquefaction and cyclic deformation of sand: a critical review. In: 5th Panamerican Conference on Soil Mechanics and Foundation Engineering édition (1975)Google Scholar
  4. Castro, G., Poulos, S.: Factors affecting liquefaction and cyclic mobility. Journal of Geotechnical Engineering édition (1977)Google Scholar
  5. Hareb, H.: Influence de l’histoire des prechargements draines sur le comportement a la liquefaction du sable d’hostun tres lache. École doctorale des sciences pour l’ingénieur de lyon, Laboratoire GéoMatériaux École Nationale des Travaux Publics de l’Etat (ENTPE), Université de Béjaïa, Algérie (2009)Google Scholar
  6. Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S., Yasuda, S., Sato, H.: Microzonation for soil liquefaction potential using simplified methods. In: 3rd International Conference on Microzonation, Seattle, vol. 3, pp. 1310–1330 (1982)Google Scholar
  7. Laouami, N., Slimani, A., Bouhadad, Y., Chatelain, J.-L., Nour, A.: Evidence for fault-related directionality and localized site effects from strong motion recordings of the 2003 Boumerdes (Algeria) earthquake: consequences on damage distribution and the algerian seismic code. Soil Dyn. Earthquake Eng. 26(11), 991–1003 (2006).  https://doi.org/10.1016/j.soildyn.2006.03.006CrossRefGoogle Scholar
  8. Liao, S.S.C., Whitman, R.V.: Overburden correction factors for SPT in sand. J. Geotech. Eng. 112(3), 373–377 (1986).  https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(373)CrossRefGoogle Scholar
  9. RPA 99: Règlement Parasismique Algérien. DTR-B.C.2.48, Ministry of Housing and Urban Planning, Algeria. C.G.S. Centre de Géophysique et de Sismologie (2003)Google Scholar
  10. Seed, H.B., Idriss, I.M.: Landslides during earthquakes due to liquefaction. J. Soil Mech. Found. Div Earthquakes Liquefaction Sand Soils 94(5), 1055–1122 (1968)Google Scholar
  11. Seed, H.B., Idriss, I.M.: Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found. Div Earthquakes Liquefaction Sand Soils 97(SM9, PROC PAPER 8371), 1249–1273 (1970)Google Scholar
  12. Seed, H.B., Idriss, I.M.: Ground Motions and Soil Liquefaction during Earthquakes. Engineering Monographs on Earthquake Criteria, Structural Design, and Strong Motion Records, vol. 5, Earthquake Engineering Research Institute, Berkeley (1982)Google Scholar
  13. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., et al.: Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. 127(10), 817–833 (2001).  https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LEEGO Laboratory, Faculty of the Civil EngineeringUniversity of Sciences and Technology Houari Boumediene (USTHB)Ezzouar, AlgiersAlgeria

Personalised recommendations