Skip to main content

NDT Geophysical Instrumentation and Data Acquisition and Processing Enhancement

  • Chapter
  • First Online:
Book cover Nondestructive Testing for Archaeology and Cultural Heritage
  • 650 Accesses

Abstract

Scientists who work in the field of NDT geophysical methods for archaeology and monumental heritage seek to address today’s demands to detect, characterize, and discriminate buried archaeological features and to obtain useful information about the conservation degree of an important monument for remediation and restoration disposal. They increasingly rely on high-resolution NDT geophysical methods to provide accurate and efficient results. In comparison with other direct procedures, NDT geophysical methods are especially well-suited for this application because they minimize time and cost factors and maximize the amount of data, information, and knowledge obtained. This chapter introduces a new mode to acquire, process, and interpret NDT geophysical data that could be define as “not standard”. This mode is intended to provide a framework for viewing the basic problem, the appropriate solving data processing and the relationship between the data, the information, and the knowledge throughout this process. In addition, this mode provides a conceptual organizing structure for identifying the means by which data, information, and knowledge can be enhanced for both site and monument characterization. Lastly, a look at how advanced visualization techniques can help address classical problems will be taken. This latter process can help in distinguishing materials that have different physical property characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelazeem M, Gobashy M (2006) Self potential inversion using genetic algorithm. J King Abdulaziz Univ Earth Sci (JKAU) 17:83–101

    Article  Google Scholar 

  • Aspinall A, Lynam JT (1968) Induced polarization as a technique for archaeological surveying. Prospezioni Archeol 3:91–93

    Google Scholar 

  • Aspinall A, Lynam J (1970) An induced polarization instrument for the detection of near‐surface features. Prospezioni Archeologiche 5:67–75

    Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300

    Article  Google Scholar 

  • Conyers LB (2004) Ground-penetrating radar for archaeology. Alta Mira Press, Walnut Creek

    Google Scholar 

  • Conyers LB (2013) Ground-penetrating radar for archaeology, 3rd edn. Alta Mira Press, 258 pp

    Google Scholar 

  • Conyers LB, Goodman D (1997) Ground penetrating radar: an introduction for archaeologists. AltaMira Press, Walnut Creek

    Google Scholar 

  • Cook JC (1975) Radar transparencies of mine and tunnel rocks. Geophysics 40(5):865–885

    Article  Google Scholar 

  • Daniels D, Gunton DJ, Scott HF (1988) Introduction to subsurface radar. Proc Inst Electr Eng 135(F4):278–320

    Google Scholar 

  • Day‐Lewis FD, Singha K, Binley AM (2005) Applying petrophysical models to radar travel time and electrical resistivity tomograms: resolution‐dependent limitations, J Geophys Res 110:B08206, https://doi.org/10.1029/2004JB003569

  • De Domenico D, Giannino F, Leucci G, Bottari C (2006) Integrated geophysical surveys at the archaeological site of Tindari (Sicily, Italy). J Archaeol Sci 33:961–970

    Article  Google Scholar 

  • de Groot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics 55(12):1613–1624

    Article  Google Scholar 

  • Di Franco JV, Rubin WL (1968) Radar detection. Artech House, Dedham

    Google Scholar 

  • Edwards LS (1977) A modified pseudosection for resistivity and induced-polarization. Geophysics 42:1020–1036

    Article  Google Scholar 

  • Feng S, Sen PN (1985) Geometrical model of conductive and dielectric properties of partially saturated rocks. J Appl Phys 58(8):3236–3243

    Article  Google Scholar 

  • Florsch N, Llubes M, Tereygeol F, Ghorbani A, Roblet P (2011) Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel-Minier site. J Archaeol Sci 38(2):438–451

    Article  Google Scholar 

  • Florsch N, Llubes M, Tereygeol F (2012) Induced polarization 3D tomography of an archaeological direct reduction slag heap. Near Surf Geophys 10:567–574

    Google Scholar 

  • Godio A, Guo T (1998) Characterisation of sandy soil with georadar measurements. J Tech Environ Geol 4:17–27

    Google Scholar 

  • Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modeling in areas of complex geology. J Applied Geophys 29:21–26

    Article  Google Scholar 

  • Leckebusch J (2003) Ground-penetrating radar: a modern three-dimensional prospection method. Archaeol Prospect 10:213–241

    Article  Google Scholar 

  • Leucci G (1999) Prospezioni elettromagnetica e di sismica a riflessione: studio dell’influenza dei parametri strumentali sul rapporto segnale/rumore. Tesi di laurea in Fisica, Università degli Studi di Lecce

    Google Scholar 

  • Leucci G (2008) Ground penetrating radar: the electromagnetic signal attenuation and maximum penetration depth. Sch Res Exch 2008(926091). https://doi.org/10.3814/2008/926091

    Article  Google Scholar 

  • Leucci G (2015) Geofisica Applicata all’Archeologia e ai Beni Monumentali. Dario Flaccovio Editore, Palermo, p 368. ISBN 9788857905068

    Google Scholar 

  • Leucci G, Margiotta S, Negri S (2004) Geological and geophysical investigations in karstic environment (Salice Salentino, Lecce, Italy). J Environ Eng Geophys (JEEG) 9:25–34

    Article  Google Scholar 

  • Leucci G, De Giorgi L, Scardozzi G (2014) Geophysical prospecting and remote sensing for the study of the San Rossore area in Pisa (Tuscany, Italy). J Archaeol Sci 52:256–276. https://doi.org/10.1016/j.jas.2014.08.028

    Article  Google Scholar 

  • Loke MH (2001) Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys. RES2DINV Manual, IRIS Instru-ments, www.iris-instruments.com

  • Madden TR, Cantwell T (1967) Induced polarization: a review, Mining Geophysics, II. Society of Exploration Geophysicists, Tulsa, pp 373–400

    Google Scholar 

  • Matera L, Noviello M, Ciminale M, Persico R (2015) Integration of multisensor data: an experiment in the archaeological park of Egnazia (Apulia, Southern Italy). Near Surf Geophys 13(6):613–621

    Google Scholar 

  • Matera L, Persico R, Geraldi E, Sileo M, Piro S (2016) GPR and IR tests in a multilevel historical building. Geosci Instrum Data Syst 5:541–550

    Article  Google Scholar 

  • Neubauer W, Eder‐Hinterleitner A, Seren S, Melichar P (2002) Georadar in the Roman civil town Carnuntum, Austria: an approach for archaeological interpretation of GPR data. Arch Prospection 9(3):135–156

    Article  Google Scholar 

  • Noon DA (1996) Stepped-frequency radar design and signal processing enhances ground penetrating radar performance. Ph.D. thesis, Department of Electrical & Computer Engineering, University of Queensland, Australia

    Google Scholar 

  • Nuzzo L, Leucci G, Negri S, Carrozzo MT, Quarta T (2002) Application of 3d visualization techniques in the analysis of GPR data for archaeology. Ann Geophys 45(2):321–337

    Google Scholar 

  • Ogilvy AA (1972) Hydrogeologic and engineering geologic possibilities for employing the method of induced potentials. Geophysics 37(5):839–850

    Article  Google Scholar 

  • Olhoeft GR, Capron DE (1993) Laboratory measurements of the radio-frequency electrical and magnetic properties of soils from near Yuma, Arizona. Open-File Report 93–701. USGS, Washington, DC

    Google Scholar 

  • Parasnis DS (1997) Principles of applied geophysics. Springer, Netherlands, p 429

    Google Scholar 

  • Persico R (2014) Ground penetrating radar inverse scattering and data processing. Wiley, p 368

    Google Scholar 

  • Persico R, Leucci G (2016) Interference Mitigation achieved with a reconfigurable stepped frequency GPR System. Remote Sens 8:926; https://doi.org/10.3390/rs8110926

    Article  Google Scholar 

  • Persico R, Prisco G (2008) A reconfigurative approach for SF-GPR prospecting. IEEE Trans Antennas Propag 56(8):2673–2680

    Article  Google Scholar 

  • Persico R, Ciminale M, Matera L (2014) A new reconfigurable stepped frequency GPR system, possibilities and issues; applications to two different Cultural Heritage Resources. Near Surf Geophys 12(6):793–801. https://doi.org/10.3997/1873-0604.2014035

  • Persico R, Dei D, Parrini F, Matera L (2016) Mitigation of narrow band interferences by means of a reconfigurable stepped frequency GPR system. Radio Sci 51. https://doi.org/10.1002/2016rs005986

    Article  Google Scholar 

  • Reppert PM, Morgan FD, Toksoz MN (2000) Dielectric constant determination using ground-penetrating radar reflection coefficients. J Appl Geophys 43(2–4):189–197

    Article  Google Scholar 

  • Reynolds JM (2011) An Introduction to applied and environmental geophysics. Wiley, Chichester

    Google Scholar 

  • Roy K, Elliott M (1980) Resistivity and IP survey for delineating saline water and freshwater zones. Geoexploration 18:145–162

    Article  Google Scholar 

  • Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 40:453–464

    Article  Google Scholar 

  • Schleifer N, Weller A, Schneider S, Junge A (2002) Investigation of a Bronze Age plankway by spectral induced polarization. Archaeol Prospect 9:243–253

    Article  Google Scholar 

  • Schmidt A (2013) Earth resistance for archaeologists (Series Editors: Conyers LB, Kvamme KL). AltaMira Press, 195 pp. ISBN 978-0-7591-1204-9

    Google Scholar 

  • Sen PN, Scala C, Cohen MH (1981) A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46(5):781–795

    Article  Google Scholar 

  • Sensors & Software (1999) Ground penetrating radar survey design. Sensors & Software, Mississauga

    Google Scholar 

  • Singha K, Moysey S (2006) Accounting for spatially variable resolution in electrical resistivity tomography through field scale rock physics relations. Geophysics 71(4):A25–A28, https://doi.org/10.1190/1.2209753

    Article  Google Scholar 

  • Slater L, Binley AM, Daily W, Johnson R (2000) Cross-hole electrical imaging of a controlled saline tracer injection. J Appl Geophys 44:85–102

    Article  Google Scholar 

  • Tejero-Andrade A, Cifuentes G, Chavez RE, Lopez Gonzalez A, Delgado-Solorzano C (2015) ‘‘L’’ and ‘‘Corner’’ arrays for 3D electrical resistivity tomography: an alternative for urban zones. Near Surf Geophys 13:1–13. https://doi.org/10.3997/1873-0604.2015015

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16(3):574–582

    Article  Google Scholar 

  • Tripp AC, Hohmann GW, Swift CM (1984) Two dimensional resistivity inversion. Geophysics 49:708–717

    Article  Google Scholar 

  • Weller A, Brune S, Hennig T, Kansy A (2000) Spectral induced polarization at a medieval smelting site. In: 6th Meeting of the Environmental and Engineering Geophysical Society (European Section, Bochum)

    Google Scholar 

  • Yilmaz O (1987) Seismic data processing. In: Neitzel EB (ed) Seismic data processing. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

  • Zanzi L, Valle S (1999) Elaborazione di dati GPR 3D per la ricerca di mine antiuomo. In: Atti del 18° Convegno Nazionale del Gruppo Nazionale di Geofisica della Terra Solida, Novembre 1999, Roma, CD-ROM, File 04.12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Leucci .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leucci, G. (2019). NDT Geophysical Instrumentation and Data Acquisition and Processing Enhancement. In: Nondestructive Testing for Archaeology and Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-01899-3_4

Download citation

Publish with us

Policies and ethics