Skip to main content

Study of Algorithms Classifiers for an Offline BMI Based on Motor Imagery of Pedaling

  • Conference paper
  • First Online:
Wearable Robotics: Challenges and Trends (WeRob 2018)

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 22))

Included in the following conference series:

Abstract

The paper compares different signal processing algorithms and classifiers to evaluate the accuracy of a BMI based on lower-limb motor imagery. The methods were based on the analysis of the peaks of the different processing epochs for the alpha, beta and gamma EEG bands through the Marginal Hilbert Spectrum, Power Spectral Density and Fourier harmonic components. Data were classified and analyzed by three classifiers: Support Vector Machine, Self-Organizing Maps and Linear Discriminator analysis. Results show accuracy is dependent on the subject, but there is not dependency between the subjects and the methods, and classifiers. Best accuracy results were achieved by using the value of the peak of the Hilbert Marginal Spectrum, obtaining the analytical signal with the Stockwell transform. Regarding the classifiers SOM presented lower accuracy values than SVM and LDA.

This research has been carried out in the framework of the project Associate - Decoding and stimulation of motor and sensory brain activity to support long term potentiation through Hebbian and paired associative stimulation during rehabilitation of gait (DPI2014-58431-C4-2-R), funded by the Spanish Ministry of Economy and Competitiveness and by the European Union through the European Regional Development Fund (ERDF) A way to build Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gharabaghi, A.: What turns assistive into restorative brain-machine interfaces? Front. Neurosci. 10, 456 (2016)

    Google Scholar 

  2. Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1), 153–159 (2006)

    Article  Google Scholar 

  3. Rao, R.P.N.: Brain-Computer Interfacing: An Introduction. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  4. Costa, Á., et al.: Attention level measurement during exoskeleton rehabilitation through a BMI system. In: González-Vargas, J., Ibáñez, J., Contreras-Vidal, J.L., van der Kooij, H., Pons, J.L. (eds.) Wearable Robotics: Challenges and Trends, vol. 16, pp. 243–247. Springer, Cham (2016)

    Chapter  Google Scholar 

  5. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 454(1971), 903LP–995 (1998)

    Article  MathSciNet  Google Scholar 

  6. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

    Article  Google Scholar 

  7. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)

    Google Scholar 

  8. Izenman, A.J.: Linear Discriminant Analysis, pp. 237–280. Springer, New York (2013)

    Google Scholar 

  9. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ortiz, M., Rodríguez-Ugarte, M., Iáñez, E., Azorín, J.M. (2019). Study of Algorithms Classifiers for an Offline BMI Based on Motor Imagery of Pedaling. In: Carrozza, M., Micera, S., Pons, J. (eds) Wearable Robotics: Challenges and Trends. WeRob 2018. Biosystems & Biorobotics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-01887-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01887-0_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01886-3

  • Online ISBN: 978-3-030-01887-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics