EIT-Based Tactile Sensing Patches for Rehabilitation and Human Machine Interaction

  • Stefania Russo
  • Nicola Carbonaro
  • Alessandro TognettiEmail author
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)


We present the development of an innovative stretchable tactile sensor based on electrical impedance tomography (EIT) for applications in wearable robotics and rehabilitation. To extract the tactile information we exploit the electrical impedance tomography technique to reconstruct the local conductivity changes of a piezoresistive fabric. The EIT method poses several new challenges in the reconstruction, counterbalanced by the overcoming of many of the drawbacks of the current tactile sensors. Results obtained are preliminary but encouraging and we believe that the combination of the EIT method with advanced machine learning techniques will enable reliable wearable tactile sensing.


  1. 1.
    Tognetti, A., Lorussi, F., Dalle Mura, G., Carbonaro, N., Pacelli, M., Paradiso, R., De Rossi, D.: New generation of wearable goniometers for motion capture systems. J. Neuroeng. Rehabil. 11(1), 56 (2014)CrossRefGoogle Scholar
  2. 2.
    Lorussi, F., Carbonaro, N., De Rossi, D., Tognetti, A.: A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors. J. Neuroeng. Rehabil. 13(1), 40 (2016)CrossRefGoogle Scholar
  3. 3.
    Tognetti, A., Lorussi, F., Carbonaro, N., De Rossi, D.: Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors 15(11), 28 435–28 455 (2015)CrossRefGoogle Scholar
  4. 4.
    Lorussi, F., Carbonaro, N., De Rossi, D., Paradiso, R., Veltink, P., Tognetti, A.: Wearable textile platform for assessing stroke patient treatment in daily life conditions. Front. Bioeng. Biotechnol. 4, 28 (2016)CrossRefGoogle Scholar
  5. 5.
    Lucchesi, I., Lorussi, F., Bellizzi, M., Carbonaro, N., Trotta, L., Casarosa, S., Tognetti, A.: Daily life self-management and self-treatment of musculoskeletal disorders through shoulphy. In: Proceedings of the 7th EAI International Conference on Wireless Mobile Communication and Healthcare, 14–15 Novembre 2017, p. 8 (2017)Google Scholar
  6. 6.
    Bianchi, M., Haschke, R., Büscher, G., Ciotti, S., Carbonaro, N., Tognetti, A.: A multi-modal sensing glove for human manual-interaction studies. Electronics 5(3), 42 (2016)CrossRefGoogle Scholar
  7. 7.
    Carbonaro, N., Anania, G., Bacchereti, M., Donati, G., Ferretti, L., Pellicci, G., Parrini, G., Vitetta, N., De Rossi, D., Tognetti, A.: An innovative multisensor controlled prosthetic hand. In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, pp. 93–96. Springer (2014)Google Scholar
  8. 8.
    Donati, M., Vitiello, N., De Rossi, S.M.M., Lenzi, T., Crea, S., Persichetti, A., Giovacchini, F., Koopman, B., Podobnik, J., Munih, M., Carrozza, M.C.: A flexible sensor technology for the distributed measurement of interaction pressure. Sensors. 13(1), 1021–1045 (2013). Scholar
  9. 9.
    Sadarangani, G.P., Jiang, X., Simpson, L.A., Eng, J.J., Menon, C.: Force myography for monitoring grasping in individuals with stroke with mild to moderate upper-extremity impairments: a preliminary investigation in a controlled environment. Front. Bioeng. Biotechnol. 5, 42 (2017)CrossRefGoogle Scholar
  10. 10.
    Silvera-Tawil, D., Rye, D., Soleimani, M., Velonaki, M.: Electrical impedance tomography for artificial sensitive robotic skin: a review. IEEE Sens. J.15(4), 2001–2016 (2015)CrossRefGoogle Scholar
  11. 11.
    Adler, A., Arnold, J.H., Bayford, R., Borsic, A., Brown, B., Dixon, P., Faes, T.J., Frerichs, I., Gagnon, H., Gärber, Y.: GREIT: a unified approach to 2d linear eit reconstruction of lung images. Physiol. Meas. 30(6), S35 (2009)CrossRefGoogle Scholar
  12. 12.
    Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  13. 13.
    Adler, A., Lionheart, W.R.: Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27(5), S25 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefania Russo
    • 2
  • Nicola Carbonaro
    • 1
  • Alessandro Tognetti
    • 1
    Email author
  1. 1.Information Engineering Department and the Research Center “E. Piaggio”University of PisaPisaItaly
  2. 2.Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Process EngineeringDübendorfSwitzerland

Personalised recommendations