Preliminary Experimental Study on Variable Stiffness Structures Based on Textile Jamming for Wearable Robotics

  • Ali SadeghiEmail author
  • Alessio Mondini
  • Barbara Mazzolai
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)


Textile based technologies can generate solutions highly adaptable with wearable robots and devices. Textile jamming (TJ) is a stiffness modulating technique with elaborated textile materials. The fabric with embedded miniature and rigid segments remain flexible due to the textile substrate while they present a high variation of stiffness (up to 17 times) in their stiff mode. The resulted TJ packs can be assembled by traditional sewing technique to the textile garments.


  1. 1.
    Asbeck, A.T., et al.: A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 34(6), 744–762 (2015)CrossRefGoogle Scholar
  2. 2.
    Mosadegh, B., et al.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014)CrossRefGoogle Scholar
  3. 3.
    Totaro, M., et al.: Soft Smart garments for lower limb joint position analysis. Sensors 17(10), 2314 (2017)CrossRefGoogle Scholar
  4. 4.
    Bureau, M., et al.: Variable stiffness structure for limb attachment. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE (2011)Google Scholar
  5. 5.
    Hauser, S., et al.: Jammjoint: a variable stiffness device based on granular jamming for wearable joint support. IEEE Robot. Autom. Lett. 2(2), 849–855 (2017)CrossRefGoogle Scholar
  6. 6.
    Collins, S.H., Wiggin, M.B., Sawicki, G.S.: Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522(7555), 212 (2015)CrossRefGoogle Scholar
  7. 7.
    Poliero, T.: Soft wearable device for lower limb assistance: assemsment of an optimized energy efficient actuation prototype. In: Soft Robotics 2018, Livorno (2018)Google Scholar
  8. 8.
    Brown, E., et al.: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. 107(44), 18809–18814 (2010)CrossRefGoogle Scholar
  9. 9.
    Ranzani, T., et al.: A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration Biomimetrics 10(3), 035008 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ali Sadeghi
    • 1
    Email author
  • Alessio Mondini
    • 1
  • Barbara Mazzolai
    • 1
  1. 1.Center for Micro BioRobotics, Istituto Italiano di TecnologiaPontederaItaly

Personalised recommendations