Skip to main content

Sensorless Force Estimator in Rehabilitation Robotics

  • Conference paper
  • First Online:
  • 169 Accesses

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 21))

Abstract

Measuring the force exerted by patients in the exercise for rehabilitation after neurological injuries is important: in quantifying the patient’s motion capabilities, to ensure safety and to provide the appropriate amount of assistance, among others. Adding a force sensor for this purpose at the end-effector of a rehabilitation robot can add considerable cost. When a robotic device is dynamically transparent and mechanically backdrivable, a force estimator based on the model of the system can be used to estimate the force applied by the patient without using the explicit force sensor. This work validates the effectiveness of a model-based force estimator, derived from the literature, within the context of rehabilitation robotics, through a successful validation the strategy on the EMU upper-limb rehabilitation robot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alcocer, A., Robertsson, A., Valera, A., Johansson, R.: Force estimation and control in robot manipulators. IFAC Proc. Vol. 36(17), 55–60 (2003)

    Article  Google Scholar 

  2. Crocher, V., Fong, J., Bosch, T., Tan, Y., Mareels, I., Oetomo, D.: Upper limb deweighting using underactuated end-effector based backdrivable manipulanda. IEEE Robot. Autom. Lett. 3, 2116–2122 (2018)

    Article  Google Scholar 

  3. Fong, J., Crocher, V., Tan, Y., Oetomo, D., Mareels, I.: EMU: a transparent 3D robotic manipulandum for upper-limb rehabilitation. In: IEEE International Conference on Rehabilitation Robotics, pp. 771–776 (2017)

    Google Scholar 

  4. Hacksel, P.J. Salcudean, S.E.: Estimation of environment forces and rigid-body velocities using observers. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 931–936 (1994)

    Google Scholar 

  5. Marchal-Crespo, L., Reinkensmeyer, D.J.: Review of control strategies for robotic movement training after neurologic injury. J. NeuroEng. Rehabil. 6(1), 20 (2009)

    Article  Google Scholar 

  6. Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 31:132–31:145 (2015)

    Article  Google Scholar 

  7. Pehlivan, A.U., Losey, D.P., O’Malley, M.K.: Minimal assist-as-needed controller for upper limb robotic rehabilitation. IEEE Trans. Robot. 32(1), 113–124 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demy Kremers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kremers, D., Fong, J., Crocher, V., Tan, Y., Oetomo, D. (2019). Sensorless Force Estimator in Rehabilitation Robotics. In: Masia, L., Micera, S., Akay, M., Pons, J. (eds) Converging Clinical and Engineering Research on Neurorehabilitation III. ICNR 2018. Biosystems & Biorobotics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-01845-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01845-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01844-3

  • Online ISBN: 978-3-030-01845-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics