Skip to main content

Role of Renshaw Cells in the Mammalian Locomotor Circuit: A Computational Study

  • Conference paper
  • First Online:
Converging Clinical and Engineering Research on Neurorehabilitation III (ICNR 2018)

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 21))

Included in the following conference series:

  • 146 Accesses

Abstract

In this study we considered the role of the inhibitory interneurons known as Renshaw cells (RC) in the activity of a simulated locomotor neural network. We used a n integrate-and fire-model to reproduce RCs experimental three-phases responses, consisting of a fast activation, a relaxation time and a slow activation. Simulations of RCs within a model of muscle spindle reflex neural network highlighted multiple roles of Renshaw cells in locomotion. We found that RCs synchronize the pool of motor neurons (MNs) they act on, and regulate the relative duration of the antagonist muscle bursts during the gait cycle. This refined model can be used to simulate the interaction between electrodes and spinal circuits to improve the efficacy of spinal cord stimulation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson, A.: Neural interfaces for the brain and spinal cord–restoring motor function. Nat. Rev. Neurol. 8(12), 690–699 (2012)

    Article  Google Scholar 

  2. Angeli, C.E.: Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014)

    Article  Google Scholar 

  3. Hofstoetter, U.D.: Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord. J. Neurophysiol. (2015). https://doi.org/10.1152/jn.00136.2015

    Article  Google Scholar 

  4. Moraud, E.M., Capogrosso, M., Formento, E., Wenger, N., DiGiovanna, J., Courtine, G., Micera, S.: Mechanisms underlying the neuromodulation of spinal circuits for correcting gait and balance deficits after spinal cord injury. Neuron 89, 814–828 (2016)

    Article  Google Scholar 

  5. Renshaw, B.: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 9, 191–204 (1946)

    Article  Google Scholar 

  6. Hultborn, H., Denton, M.E., Wienecke, J., Nielsen, J.B.: Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current. J. Physiol. 552(Pt 3), 945–952 (2003)

    Article  Google Scholar 

  7. Maltenfort, M.G., Heecan, C.J., Rymer, W.Z.: Decorrelation actions of Renshaw interneuron on the firing of spinal motoneurons within a motor nucleus: a stimulation study. J. Neurophysiol. 80, 309–323 (1998)

    Article  Google Scholar 

  8. Windhorst, U.: Activation of Renshaw cells. Prog. Neurobiol. 35, 135–179 (1990)

    Article  Google Scholar 

  9. Nishimaru, H., Koganezawa, T., Kakizaki, M., Ebihara, T., Yanagawa, Y.: Inhibitory synaptic modulation of Renshaw cell activity in the lumbar spinal cord of neonatal mice. J. Neurophysiol. 103, 3437–3447 (2010)

    Article  Google Scholar 

  10. Carnevale, N., Hines, M.: The Neuron Book. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  11. Bashor, D.P.: A large-scale model of some spinal reflex circuits. Biol. Cybern. 78(2), 147–157 (1998)

    Article  Google Scholar 

  12. Stienen, A.H.A., Schouten, A.C., Schuurmans, J., van der Helm, F.C.T.: Analysis of reflex modulation with a biologically realistic neural network. J. Comput. Neurosci. 23, 333–348 (2007)

    Article  Google Scholar 

  13. Kreuz, T., Haas, J., Morelli, A., Abarbanel, H.D.I., Politi, A.: Measuring spike train synchrony. J. Neurosci. Methods 165, 151–161 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla Corsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corsi, P., Formento, E., Capogrosso, M., Micera, S. (2019). Role of Renshaw Cells in the Mammalian Locomotor Circuit: A Computational Study. In: Masia, L., Micera, S., Akay, M., Pons, J. (eds) Converging Clinical and Engineering Research on Neurorehabilitation III. ICNR 2018. Biosystems & Biorobotics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-01845-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01845-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01844-3

  • Online ISBN: 978-3-030-01845-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics