Skip to main content

The LHCb Detector at the LHC

  • Chapter
  • First Online:
  • 238 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The Large Hadron Collider (LHC) [1] at CERN is the most powerful particle collider ever built. The accelerator has a circumference of 27\(\mathrm {\,km}\) and it is installed in a dedicated tunnel placed 100\(\mathrm {\,m}\) underground in the Swiss-France area near Geneva (Switzerland). LHC is designed to accelerate counter-propagating proton beams up to an energy of 7\(\mathrm {\,TeV}\) and collide them at the nominal centre-of-mass energy of 14\(\mathrm {\,TeV}\). Before injection in the LHC ring, the beams are pre-accelerated by several steps as shown in Fig. 2.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A quench in a superconducting magnet induced a leak of liquid helium in the tunnel damaging the corresponding section of the LHC accelerator.

  2. 2.

    A further advantage of keeping the luminosity constant is that the same trigger configuration can be kept and that the detector occupancy is not changing. This simplifies the analysis of the data and reduces systematic uncertainties.

  3. 3.

    Inner (Outer) region corresponds to regions close (far) to the beam-pipe.

  4. 4.

    Five of them are located upstream the interaction point.

  5. 5.

    Thicker sensors are used in left and right boxes where two rows of sensors connected in series are present.

  6. 6.

    The 4\(\,\upmu {\mathrm s}\) latency also includes the cable and electronic delays and the time the particle spent to travel through the full detector.

References

  1. L. Evans, P. Bryant, LHC machine. JINST 3, S08001 (2008). https://doi.org/10.1088/1748-0221/3/08/S08001

    Article  ADS  Google Scholar 

  2. C. Lefèvre, The CERN accelerator complex. Complexe des accélérateurs du CERN, Dec 2008

    Google Scholar 

  3. ATLAS Collaboration, G. Aad et al., The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008). https://doi.org/10.1088/1748-0221/3/08/S08003

    Google Scholar 

  4. CMS Collaboration, S. Chatrchyan et al., The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004

    Google Scholar 

  5. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214

    Article  ADS  Google Scholar 

  6. CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 \(\rm GeV\) with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235

    Article  ADS  Google Scholar 

  7. LHCb Collaboration, A.A. Alves Jr. et al., The LHCb detector at the LHC. JINST 3, S08005 (2008). https://doi.org/10.1088/1748-0221/3/08/S08005

    ADS  Google Scholar 

  8. ALICE Collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008) https://doi.org/10.1088/1748-0221/3/08/S08002

    Google Scholar 

  9. TOTEM Collaboration, G. Anelli et al., The TOTEM experiment at the CERN Large Hadron Collider. JINST 3, S08007 (2008). https://doi.org/10.1088/1748-0221/3/08/S08007

    Google Scholar 

  10. LHCf Collaboration, O. Adriani et al., The LHCf detector at the CERN Large Hadron Collider. JINST 3, S08006 (2008). https://doi.org/10.1088/1748-0221/3/08/S08006

    Google Scholar 

  11. MoEDAL Collaboration, J. Pinfold et al., Technical design report of the MoEDAL experiment. Technical report, CERN-LHCC-2009-006, MoEDAL-TDR-001, Jun 2009

    Google Scholar 

  12. LHCb Collaboration, Large Hadron Collider beauty experiment public results website, http://lhcb-public.web.cern.ch/lhcb-public/

  13. LHCb, R. Aaij et al., Measurement of the inelastic pp cross-section at a centre-of-mass energy of \( \sqrt{s} = 7\,{\rm TeV}\). JHEP 02, 129 (2015). https://doi.org/10.1007/JHEP02(2015)129, arXiv:1412.2500

  14. LHCb Collaboration, R. Aaij et al., Measurement of \(\sigma (pp \rightarrow b \bar{b} X)\) at \(\sqrt{s}=7~\rm {TeV}\) in the forward region. Phys. Lett. B 694, 209 (2010). https://doi.org/10.1016/j.physletb.2010.010, arXiv:1009.2731

  15. M.L. Mangano, G. Altarelli, CERN workshop on standard model physics (and more) at the LHC (2000), http://cds.cern.ch/record/425440

  16. J. Nardulli, Reconstruction of two-body B decays in LHCb. Ph.D. thesis, Vrije U. Amsterdam, Amsterdam, 2007, Presented on 04 Oct 2007

    Google Scholar 

  17. LHCb Collaboration, For LHCb talks, Jul 2012, https://cds.cern.ch/record/1463546. General Photo

  18. LHCb Collaboration, \(b\overline{b}\) Production angles public plots, http://lhcb.web.cern.ch/lhcb/speakersbureau/html/bb_ProductionAngles.html. General Photo

  19. R. Lindner, LHCb layout, Feb 2008, https://cds.cern.ch/record/1087860. LHCb Collection

  20. BaBar, B. Aubert et al., The BaBar detector. Nucl. Instrum. Methods A479, 1 (2002). https://doi.org/10.1016/S0168-9002(01)02012-5, arXiv:hep-ex/0105044

    Article  ADS  Google Scholar 

  21. A. Abashian, The Belle detector. Nucl. Instrum. Methods A479, 117 (2002). https://doi.org/10.1016/S0168-9002(01)02013-7

    Article  ADS  Google Scholar 

  22. R. Jacobsson, Future wishes and constraints from the experiments at the LHC for the Proton-Proton programme, in Proceedings, ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders (BB2013): CERN, Geneva, Switzerland, 18–22 March 2013 (2014), pp. 167–176. https://doi.org/10.5170/CERN-2014-004.167, arXiv:1410.3663

  23. B. Muratori, T. Pieloni, Luminosity levelling techniques for the LHC, in Proceedings, ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders (BB2013): CERN, Geneva, Switzerland, 18–22 March 2013 (2014), pp. 177–181. https://doi.org/10.5170/CERN-2014-004.177, arXiv:1410.5646

  24. F. Follin, D. Jacquet, Implementation and experience with luminosity levelling with offset beam, in Proceedings, ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders (BB2013): CERN, Geneva, Switzerland, 18–22 March 2013 (2014), pp. 183–187. https://doi.org/10.5170/CERN-2014-004.183, arXiv:1410.3667

  25. LHCb Collaboration, R. Aaij et al., LHCb detector performance. Int. J. Mod. Phys. A 30(07), 1530022 (2015). https://doi.org/10.1142/S0217751X15300227, arXiv:1412.6352

  26. LHCb Collaboration, VELO approved conference plots, https://lbtwiki.cern.ch/bin/view/VELO/VELOConferencePlots

  27. L. Collaboration, LHCb VELO (VErtex LOcator): technical design report. Technical Design Report LHCb, CERN, Geneva, 2001

    Google Scholar 

  28. LHCb Collaboration, LHCb magnet: technical design report, CERN-LHCC-2000-007. LHCb-TDR-001, http://cdsweb.cern.ch/search?p=CERN-LHCC-2000-007&f=reportnumber&action_search=Search&c=LHCb+Reports

  29. LHCb Collaboration, LHCb silicon tracker - material for publications, http://www.physik.unizh.ch/groups/lhcb/public/material/

  30. LHCb Collaboration, LHCb reoptimized detector design and performance: technical design report, CERN-LHCC-2003-030. LHCB-TDR-009, http://cdsweb.cern.ch/search?p=CERN-LHCC-2003-030&f=reportnumber&action_search=Search&c=LHCb+Reports

  31. L. Collaboration, The LHCb detector at the LHC. J. Instrum. 3(08), S08005 (2008)

    Google Scholar 

  32. LHCb Collaboration, LHCb inner tracker: technical design report, CERN-LHCC-2002-029. LHCB-TDR-008, http://cdsweb.cern.ch/search?p=CERN-LHCC-2002-029&f=reportnumber&action_search=Search&c=LHCb+Reports

  33. LHCb Outer Tracker Group, R. Arink et al., Performance of the LHCb outer tracker. JINST 9(01), P01002 (2014). https://doi.org/10.1088/1748-0221/9/01/P01002, arXiv:1311.3893

  34. LHCb Collaboration, LHCb RICH: technical design report, CERN-LHCC-2000-037. LHCB-TDR-003, http://cdsweb.cern.ch/search?p=CERN-LHCC-2000-037&f=reportnumber&action_search=Search&c=LHCb+Reports

  35. M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC. Eur. Phys. J. C 73, 2431 (2013). https://doi.org/10.1140/epjc/s10052-013-2431-9, arXiv:1211.6759

  36. G. David et al., Performance of the PHENIX EM calorimeter. IEEE Trans. Nucl. Sci. 43, 1491 (1996). https://doi.org/10.1109/23.507090

    Article  ADS  Google Scholar 

  37. J. Badier et al., Shashlik calorimeter: beam test results. Nucl. Instrum. Methods A348, 74 (1994). https://doi.org/10.1016/0168-9002(94)90844-3

    Article  ADS  Google Scholar 

  38. A. Martin Sanchez, CP violation studies on the \({\rm B}^0 \rightarrow D{\rm K}^{*0}\) decays and hadronic trigger performance with the LHCb detector at CERN, CERN-THESIS-2013-311, http://cdsweb.cern.ch/search?p=CERN-THESIS-2013-311&f=reportnumber&action_search=Search&c=LHCb+Theses

  39. LHCb Collaboration, LHCb calorimeters: technical design report, CERN-LHCC-2000-036. LHCB-TDR-002, http://cdsweb.cern.ch/search?p=CERN-LHCC-2000-036&f=reportnumber&action_search=Search&c=LHCb+Reports

  40. LHCb Collaboration, LHCb muon system: technical design report, CERN-LHCC-2001-010. LHCB-TDR-004, http://cdsweb.cern.ch/search?p=CERN-LHCC-2001-010&f=reportnumber&action_search=Search&c=LHCb+Reports

  41. LHCb Collaboration, X. Cid Vidal, Muon identification in the LHCb experiment, arXiv:1005.2585

  42. LHCb RICH Group, M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73, 2431 (2013). https://doi.org/10.1140/epjc/s10052-013-2431-9, arXiv:1211.6759

  43. A. Powell et al., Particle identification at LHCb. PoS ICHEP2010, 020 (2010). LHCb-PROC-2011-008, https://cdsweb.cern.ch/record/1322666?ln=en

  44. LHCb Collaboration, LHCb trigger schemes webpage, https://lhcb.web.cern.ch/lhcb/speakersbureau/html/TriggerScheme.html

  45. LHCb HLT Project, J. Albrecht, V.V. Gligorov, G. Raven, S. Tolk, Performance of the LHCb high level trigger in 2012. J. Phys. Conf. Ser. 513, 012001 (2014). https://doi.org/10.1088/1742-6596/513/1/012001, arXiv:1310.8544

    Google Scholar 

  46. V.V. Gligorov, M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree. JINST 8, P02013 (2013). https://doi.org/10.1088/1748-0221/8/02/P02013, arXiv:1210.6861

    Article  ADS  Google Scholar 

  47. M. Williams et al., The HLT2 topological lines. Technical report, LHCb-PUB-2011-002, CERN-LHCb-PUB-2011-002, CERN, Geneva, Jan 2011

    Google Scholar 

  48. V.V. Gligorov, C. Thomas, M. Williams, The HLT inclusive B triggers, Technical report, LHCb-PUB-2011-016, CERN-LHCb-PUB-2011-016, LHCb-INT-2011-030, 2011

    Google Scholar 

  49. M. Frank et al., Deferred high level trigger in LHCb: a boost to CPU resource utilization. J. Phys. Conf. Ser. 513(1), 012006 (2014)

    Google Scholar 

  50. S. Benson, V. Gligorov, M.A. Vesterinen, J.M. Williams, The LHCb turbo stream. J. Phys. Conf. Ser. 664(8), 082004 (2015)

    Google Scholar 

  51. W. Hulsbergen, The Global covariance matrix of tracks fitted with a Kalman filter and an application in detector alignment. Nucl. Instrum. Methods A600, 471 (2009). https://doi.org/10.1016/j.nima.2008.11.094, arXiv:0810.2241

    Article  ADS  Google Scholar 

  52. J. Amoraal, Application of vertex and mass constraints in track-based alignment. Nucl. Instrum. Methods A712, 48 (2013). https://doi.org/10.1016/j.nima.2012.11.192, arXiv:1207.4756

    Article  ADS  Google Scholar 

  53. G. Barrand et al., GAUDI - the software architecture and framework for building LHCb data processing applications, in Proceedings, 11th International Conference on Computing in High-Energy and Nuclear Physics (CHEP 2000): Padua, Italy, 7–11 February 2000 (2000), pp. 92–95

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Quagliani .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quagliani, R. (2018). The LHCb Detector at the LHC . In: Study of Double Charm B Decays with the LHCb Experiment at CERN and Track Reconstruction for the LHCb Upgrade. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-01839-9_2

Download citation

Publish with us

Policies and ethics