Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 186 Accesses

Abstract

The Standard Model (SM) of particle physics and general relativity (GR) are the two main modern theories used to describe fundamental interactions in Nature. The former is able to describe experimental data in a consistent framework regarding electromagnetic, weak and strong interactions while the latter describes the gravitational one. In this thesis only the Standard Model of particle physics will be described. Particular attention will be made on the quark sector, providing a description of the weak interaction structure of the heavy flavour sector of particle physics. The heavy flavour sector is encoded in the SM through the Cabibbo–Kobayashi–Maskawa (CKM) matrix. This is the main domain of study at the LHCb experiment (see Chap. 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gravity is not included in the model; the gravitational force is negligible in particle physics domain. Furthermore, at the currently accessible energies in the laboratory, gravitational force effects would be too small to be observed.

  2. 2.

    SUSY provide candidates (neutralinos, the super-symmetric partner of neutrinos) to the dark matter and solve some problems of the Standard Model, so, maybe, one day, the current picture of fundamental particles will be extended including sleptons and squarks.

  3. 3.

    Unification of theories in physics is not a novel concept. As example for unification of theories, the Lorentz tensor \(F_{\mu \nu }\) was able to unify magnetic and electric forces under the same picture.

  4. 4.

    Also factorization and infrared safety in theoretical predictions play a crucial role.

  5. 5.

    In gauge theory, the interaction field are achieved by substitution of the partial derivative with a covariant derivative, allowing to preserve the gauge symmetry.

  6. 6.

    Although the Dirac neutrino approach fits well with the SM picture of mass generation via Higgs mechanism, it also suggests that Higgs-neutrino interaction is 12 orders of magnitude weaker than that of the top quark. In such picture, the hierarchy of masses of SM particles is still an open question in physics.

  7. 7.

    It is also possible to use other relations but in all the other relations \(\lambda \) appears to different powers in the unitarity condition.

References

  1. M. Borsato, Study of the \(B^0 \rightarrow K^{\ast 0}e^+ e^-\) decay with the LHCb detector and development of a novel concept of PID detector: the Focusing DIRC. Ph.D thesis, Santiago de Compostela U (2015)

    Google Scholar 

  2. Particle Data Group, C. Patrignani et al., Review of particle physics. Chin. Phys. C40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  Google Scholar 

  3. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1 (2012). https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214

    Article  ADS  Google Scholar 

  4. CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125GeV with the CMS experiment at the LHC. Phys. Lett. B716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235

    Article  ADS  Google Scholar 

  5. E. Fermi, An attempt of a theory of beta radiation. Z. Phys. 88, 161 (1934). https://doi.org/10.1007/BF01351864

    Article  ADS  Google Scholar 

  6. E. Noether, Invariant variation problems. Gott. Nachr. 1918, 235 (1918). https://doi.org/10.1080/00411457108231446. arXiv:physics/0503066

    Article  Google Scholar 

  7. T.D. Lee, C.-N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104, 254 (1956). https://doi.org/10.1103/PhysRev.104.254

    Article  ADS  Google Scholar 

  8. C.S. Wu, Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413 (1957). https://doi.org/10.1103/PhysRev.105.1413

    Article  ADS  Google Scholar 

  9. M. Goldhaber, L. Grodzins, A.W. Sunyar, Helicity of neutrinos. Phys. Rev. 109, 1015 (1958). https://doi.org/10.1103/PhysRev.109.1015

    Article  ADS  Google Scholar 

  10. Gargamelle Neutrino, F.J. Hasert et al., Observation of neutrino like interactions without muon or electron in the Gargamelle Neutrino experiment. Nucl. Phys. B73, 1 (1974). https://doi.org/10.1016/0550-3213(74)90038-8

    Article  ADS  Google Scholar 

  11. S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579 (1961). https://doi.org/10.1016/0029-5582(61)90469-2

    Article  Google Scholar 

  12. P.W. Higgs, Broken symmetries and the masses of Gauge Bosons. Phys. Rev. Lett. 13, 508 (1964). https://doi.org/10.1103/PhysRevLett.13.508

    Article  ADS  MathSciNet  Google Scholar 

  13. P.W. Higgs, Spontaneous symmetry breakdown without Massless Bosons. Phys. Rev. 145, 1156 (1966). https://doi.org/10.1103/PhysRev.145.1156

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264 (1967). https://doi.org/10.1103/PhysRevLett.19.1264

    Article  ADS  Google Scholar 

  15. A. Salam, Weak and electromagnetic interactions. Conf. Proc. C680519, 367 (1968)

    Google Scholar 

  16. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964). https://doi.org/10.1103/PhysRevLett.13.321

    Article  ADS  MathSciNet  Google Scholar 

  17. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964). https://doi.org/10.1016/0031-9163(64)91136-9

    Article  ADS  Google Scholar 

  18. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964). https://doi.org/10.1103/PhysRevLett.13.585

    Article  ADS  Google Scholar 

  19. A. Collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120 (2013)

    Article  Google Scholar 

  20. J.J. Thomson, Cathode rays. Phil. Mag. 44, 293 (1897). https://doi.org/10.1080/14786449708621070

    Article  Google Scholar 

  21. J. Chadwick, Possible existence of a neutron. Nature 129, 312 (1932). https://doi.org/10.1038/129312a0

    Article  ADS  Google Scholar 

  22. C.D. Anderson, The positive electron. Phys. Rev. 43, 491 (1933). https://doi.org/10.1103/PhysRev.43.491

    Article  ADS  Google Scholar 

  23. S.H. Neddermeyer, C.D. Anderson, Note on the nature of cosmic ray particles. Phys. Rev. 51, 884 (1937). https://doi.org/10.1103/PhysRev.51.884

    Article  ADS  Google Scholar 

  24. H. Yukawa, On the interaction of elementary particles. Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    MATH  Google Scholar 

  25. M. Gell-Mann, A schematic model of Baryons and Mesons. Phys. Lett. 8, 214 (1964). https://doi.org/10.1016/S0031-9163(64)92001-3

    Article  ADS  Google Scholar 

  26. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 1,

    Google Scholar 

  27. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531 (1963). https://doi.org/10.1103/PhysRevLett.10.531

    Article  ADS  Google Scholar 

  28. S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with Lepton-Hadron symmetry. Phys. Rev. D 2, 1285 (1970). https://doi.org/10.1103/PhysRevD.2.1285

    Article  ADS  Google Scholar 

  29. E598 Collaboration, J.J. Aubert et al., Experimental observation of a heavy particle. J. Phys. Rev. Lett. 33, 1404 (1974). https://doi.org/10.1103/PhysRevLett.33.1404

    Article  ADS  Google Scholar 

  30. SLAC-SP-017 Collaboration, J.E. J.Ãugustin et al., Discovery of a narrow resonance in \(e^{+}e^{-}\) annihilation. Phys. Rev. Lett. 33, 1406 (1974). https://doi.org/10.1103/PhysRevLett.33.1406

    Article  ADS  Google Scholar 

  31. J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the \(2\pi \) decay of the \(K_{2}^{0}\) meson. Phys. Rev. Lett. 13, 138 (1964). https://doi.org/10.1103/PhysRevLett.13.138

    Article  ADS  Google Scholar 

  32. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652 (1973). https://doi.org/10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  33. S.W. Herb, Observation of a dimuon resonance at 9.5GeV in 400GeV proton-nucleus collisions. Phys. Rev. Lett. 39, 252 (1977). https://doi.org/10.1103/PhysRevLett.39.252

    Article  ADS  Google Scholar 

  34. CDF Collaboration, C. Collaboration, Evidence for top quark production in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. Lett. 73, 225 (1994). https://doi.org/10.1103/PhysRevLett.73.225, arXiv:hep-ex/9405005

    Article  ADS  Google Scholar 

  35. B. Pontecorvo, Mesonium and anti-mesonium. Sov. Phys. JETP 6, 429 (1957)

    ADS  Google Scholar 

  36. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge. Sov. Phys. JETP 7, 172 (1958)

    Google Scholar 

  37. Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870 (1962). https://doi.org/10.1143/PTP.28.870

    Article  ADS  MATH  Google Scholar 

  38. L.-L. Chau, W.-Y. Keung, Comments on the parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 53, 1802 (1984). https://doi.org/10.1103/PhysRevLett.53.1802

    Article  ADS  Google Scholar 

  39. L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 51, 1945 (1983). https://doi.org/10.1103/PhysRevLett.51.1945

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Quagliani .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quagliani, R. (2018). Introduction to Theory. In: Study of Double Charm B Decays with the LHCb Experiment at CERN and Track Reconstruction for the LHCb Upgrade. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-01839-9_1

Download citation

Publish with us

Policies and ethics