Skip to main content

Abstract

Emergency analysis and technogenic risk assessment are the key concepts of the technogenic safety research. There are some methods used for their investigation, for example, the event tree analysis method. But the high complexity of building and verification of event trees of complex technogenic systems significantly weakens the effectiveness of the practical application of this method and requires development of special software and modification of the standard methodology. This paper describes a new algorithm for computer-aided event tree synthesis for technical systems in petrochemistry. The proposed algorithm is based on the original model of the object technical state dynamics which describes cause-effect relationships between the parameters in different time intervals and a case-based reasoning approach. The model of the technical state dynamics is formalized in the form of the technical states matrix. The case-based reasoning approach is used for implementation of the algorithm proposed. The elements of software, including functions, the architecture and the information process of event tress synthesis are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faisal, I., Abbasi, S.: Analytical simulation and PROFAT II: a new methodology and a computer automated tool for fault tree analysis in chemical process industries. J. Hazard. Mater. 87(1–3), 23–56 (2001). https://doi.org/10.1016/S0304-3894(00)00169-2

    Article  Google Scholar 

  2. Henley, E., Kumamoto, H.: Reliability Engineering and Risk Assessment. Prentice-Hall Inc., Englewood Cliffs (1981)

    Google Scholar 

  3. Kumamoto, H.: Chapter 7 – Fault tree analysis. In: Fundamental Studies in Engineering, vol. 16, pp. 249–311. Elsevier, New York (1993)

    Google Scholar 

  4. Papazoglou, I.: Functional block diagrams and automated construction of event trees. Reliab. Eng. Syst. Saf. 61(3), 185–214 (1998). https://doi.org/10.1016/S0951-8320(98)00011-8

    Article  Google Scholar 

  5. Walker, M., Papadopoulos, Y.: Synthesis and analysis of temporal fault trees with PANDORA: the time of Priority AND gates. Nonlinear Anal. Hybrid Syst. 2, 368–382 (2008). https://doi.org/10.1016/j.nahs.2006.05.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, Y., Teague, T., West, H., Mannan, S., O’Connor, M.: A new algorithm for computer-aided fault tree synthesis. J. Loss Prev. Process. Ind. 15(4), 265–277 (2002). https://doi.org/10.1016/S0950-4230(02)00011-6

    Article  Google Scholar 

  7. Yang, Z.-X., Zheng, Y.-Y., Xue, J.-X.: Development of automatic fault tree synthesis system using decision matrix. Int. J. Prod. Econ. 121(1), 49–56 (2009). https://doi.org/10.1016/j.ijpe.2008.02.021

    Article  Google Scholar 

  8. Bobbio, A., Ciancamerla, E., Franceschinis, G., Gaeta, R., Minichino, M., Portinale, L.: Sequential application of heterogeneous models for the safety analysis of a control system: a case study. Reliab. Eng. Syst. Saf. 81, 269–280 (2003). https://doi.org/10.1016/S0951-8320(03)00091-7

    Article  Google Scholar 

  9. Wang, Y., Li, Q., Chang, M., Chen, H., Zang, G.: Research on fault diagnosis expert system based on the neural network and the fault tree technology. Procedia Eng. 31, 1206–1210 (2012). https://doi.org/10.1016/j.proeng.2012.01.1164

    Article  Google Scholar 

  10. ISO/IEC 31010:2009 Risk management - Risk assessment techniques

    Google Scholar 

  11. Majdara, A., Wakabayashi, T.: Component-based modeling of systems for automated fault tree generation. Reliab. Eng. Syst. Saf. 94(6), 1076–1086 (2002). https://doi.org/10.1016/j.ress.2008.12.003

    Article  Google Scholar 

  12. Ferdous, R., Khan, F., Veitch, B., Amyotte, P.: Methodology for computer-aided fault tree analysis. Process. Saf. Environ. Prot. 85(1), 70–80 (2007). https://doi.org/10.1205/psep06002

    Article  Google Scholar 

  13. Risk spectrum homepage. http://www.riskspectrum.com/en/risk/. Accessed 16 Mar 2018

  14. FaultTree+ homepage. https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/. Accessed 16 Mar 2018

  15. SAPHIRE homepage. http://www.princeton.edu/~achaney/tmve/wiki100k/docs/SAPHIRE.html. Accessed 16 Mar 2018

  16. SZMA homepage. http://www.szma.com/pkasm.shtml. Accessed 16 Mar 2018

  17. Berman, A., Nikolaichuk, O.: Technical state space of unique mechanical systems. J. Mach. Manuf. Reliab. 36, 10–16 (2007). https://doi.org/10.3103/S105261880

    Article  Google Scholar 

  18. Berman, A.: Formalization of formation processes of failure for unique mechanical systems. J. Mach. Manuf. Reliab. 3, 89–95 (1994)

    Google Scholar 

  19. Berman, A., Nikolaychuk, O., Pavlov, A., Yurin, A.: A methodology for the investigation of the reliability and safety of unique technical systems. Proc. Inst. Mech. Eng., Part O: J. Risk Reliab. 228(1), 29–38 (2014). https://doi.org/10.1177/1748006X13494820

    Article  Google Scholar 

  20. Berman, A., Khramova, V.: Automated data base for failures in pipelines and tubular high-pressure apparatus. Chem. Pet. Eng. 29, 63–66 (1993)

    Article  Google Scholar 

  21. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7, 39–59 (1994). https://doi.org/10.3233/aic-1994-7104

  22. Bergmann, R.: Experience Management. LNAI, vol. 2432. Springer, Heidelberg (2002)

    Google Scholar 

  23. Nikolaychuk, O., Yurin, A.: Computer-aided identification of mechanical system’s technical state with the aid of case-based reasoning. Expert. Syst. Appl. 34, 635–642 (2008). https://doi.org/10.1016/j.eswa.2006.10.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Yu. Yurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berman, A.F., Nikolaychuk, O.A., Yurin, A.Y. (2019). Computer-Aided Event Tree Synthesis on the Basis of Case-Based Reasoning. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Third International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’18). IITI'18 2018. Advances in Intelligent Systems and Computing, vol 875. Springer, Cham. https://doi.org/10.1007/978-3-030-01821-4_1

Download citation

Publish with us

Policies and ethics