Skip to main content

Saturation Transition in the 2D J-Q Model

  • Chapter
  • First Online:
Magnetic Field Effects in Low-Dimensional Quantum Magnets

Part of the book series: Springer Theses ((Springer Theses))

  • 337 Accesses

Abstract

Using a combination of quantum Monte Carlo and exact methods, we study the field-driven saturation transition of the two-dimensional J-Q model, in which the antiferromagnetic Heisenberg exchange (J) coupling competes with an additional four-spin interaction (Q) that favors valence-bond solid order. For small values of Q, the saturation transition is continuous and is expected to be governed by zero-scale-factor universality at its upper critical dimension, with a specific form of logarithmic corrections to scaling (first proposed by Sachdev et al., Phys Rev B 50:258, 1994). Our results conform to this expectation, but the logarithmic corrections to scaling do not match the form predicted by Sachdev et al.; we discuss an alternative scaling form based on the 4D Ising universality class. We also show that the saturation transition becomes first order above a critical coupling ratio (QJ)min and is accompanied by magnetization jumps—metamagnetism. We obtain an exact solution for (QJ)min using a high magnetization expansion, and confirm the existence of the magnetization jumps beyond this value of coupling using quantum Monte Carlo simulations. A version of this chapter without the discussion on 4D Ising universality was published in Phys Rev B 98:064405, 2018.

A version of this chapter without the discussion on 4D Ising universality titled “Metamagnetism and zero-scale-factor universality in the two-dimensional J-Q model” and coauthored with Anders W. Sandvik and Kedar Damle has been published in https://doi.org/Physical Review B 98 064405 (2018) [1]. Reprinted with permission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also, Chap. 2.

  2. 2.

    The term “Marshall positive” refers to Hamiltonians that are free of the sign problem and therefore accessible to large-scale numerical study by quantum Monte Carlo simulations. See Sect. 5.3.1 for an explanation of the sign problem.

  3. 3.

    Thanks to Cenke Xu for pointing this out.

References

  1. A. Iaizzi, K. Damle, A.W. Sandvik, Phys. Rev. B 98, 064405 (2018). http://dx.doi.org/10.1103/PhysRevB.98.064405

    Article  ADS  Google Scholar 

  2. A. Iaizzi, K. Damle, A.W. Sandvik, Phys. Rev. B 95, 174436 (2017). http://dx.doi.org/10.1103/PhysRevB.95.174436

    Article  ADS  Google Scholar 

  3. A. Iaizzi A.W. Sandvik, J. Phys. Conf. Ser. 640, 012043 (2015). http://stacks.iop.org/1742-6596/640/i=1/a=012043

    Article  Google Scholar 

  4. S. Sachdev, T. Senthil, R. Shankar, Phys. Rev. B 50, 258 (1994). http://dx.doi.org/10.1103/PhysRevB.50.258

    Article  ADS  Google Scholar 

  5. R.K. Kaul, R.G. Melko, A.W. Sandvik, Annu. Rev. Condens. Matter Phys. 4, 179 (2013). http://dx.doi.org/10.1146/annurev-conmatphys-030212-184215

    Article  ADS  Google Scholar 

  6. A.W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.227202

    Article  ADS  Google Scholar 

  7. S. Sanyal, A. Banerjee, K. Damle, Phys. Rev. B 84, 235129 (2011). http://dx.doi.org/10.1103/PhysRevB.84.235129

    Article  ADS  Google Scholar 

  8. Y. Tang, A.W. Sandvik, Phys. Rev. Lett. 107, 157201 (2011). http://dx.doi.org/10.1103/PhysRevLett.107.157201

    Article  ADS  Google Scholar 

  9. Y. Tang, A.W. Sandvik, Phys. Rev. B 92, 184425 (2015). http://dx.doi.org/10.1103/PhysRevB.92.184425

    Article  ADS  Google Scholar 

  10. J. Lou, A.W. Sandvik, N. Kawashima, Phys. Rev. B 80, 180414 (2009). http://dx.doi.org/10.1103/PhysRevB.80.180414

    Article  ADS  Google Scholar 

  11. A.W. Sandvik, Phys. Rev. Lett. 104, 177201 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.177201

    Article  ADS  Google Scholar 

  12. S. Jin, A.W. Sandvik, Phys. Rev. B 87, 180404 (2013). http://dx.doi.org/10.1103/PhysRevB.87.180404

    Article  ADS  Google Scholar 

  13. Y. Tang, A.W. Sandvik, Phys. Rev. Lett. 110, 217213 (2013). http://dx.doi.org/10.1103/PhysRevLett.110.217213

    Article  ADS  Google Scholar 

  14. I.S. Jacobs, P.E. Lawrence, Phys. Rev. 164, 866 (1967). http://dx.doi.org/10.1103/PhysRev.164.866

    Article  ADS  Google Scholar 

  15. E. Stryjewski, N. Giordano, Adv. Phys. 26, 487 (1977). http://dx.doi.org/10.1080/00018737700101433

    Article  ADS  Google Scholar 

  16. C. Gerhardt, K.-H. Mütter, H. Kröger, Phys. Rev. B 57, 11504 (1998). http://dx.doi.org/10.1103/PhysRevB.57.11504

    Article  ADS  Google Scholar 

  17. S. Hirata, ArXiv e-prints (1999). http://arxiv.org/abs/cond-mat/9912066cond-mat/9912066

  18. A.A. Aligia, Phys. Rev. B 63, 014402 (2000). http://dx.doi.org/10.1103/PhysRevB.63.014402

    Article  ADS  Google Scholar 

  19. D.V. Dmitriev, V.Y. Krivnov, Phys. Rev. B 73, 024402 (2006). http://dx.doi.org/10.1103/PhysRevB.73.024402

    Article  ADS  Google Scholar 

  20. L. Kecke, T. Momoi, A. Furusaki, Phys. Rev. B 76, 060407 (2007). http://dx.doi.org/10.1103/PhysRevB.76.060407

    Article  ADS  Google Scholar 

  21. J. Sudan, A. Lüscher, A.M. Läuchli, Phys. Rev. B 80, 140402 (2009). http://dx.doi.org/10.1103/PhysRevB.80.140402

    Article  ADS  Google Scholar 

  22. M. Arlego, F. Heidrich-Meisner, A. Honecker, G. Rossini, T. Vekua, Phys. Rev. B 84, 224409 (2011). http://dx.doi.org/10.1103/PhysRevB.84.224409

    Article  ADS  Google Scholar 

  23. A.K. Kolezhuk, F. Heidrich-Meisner, S. Greschner, T. Vekua, Phys. Rev. B 85, 064420 (2012). http://dx.doi.org/10.1103/PhysRevB.85.064420

    Article  ADS  Google Scholar 

  24. D. Huerga, J. Dukelsky, N. Laflorencie, G. Ortiz, Phys. Rev. B 89, 094401 (2014). http://dx.doi.org/10.1103/PhysRevB.89.094401

    Article  ADS  Google Scholar 

  25. A.W. Sandvik, in American Institute of Physics Conference Series ed. by A. Avella, F. Mancini, vol. 1297, (2010), pp. 135–338, http://arxiv.org/abs/1101.3281. http://dx.doi.org/10.1063/1.3518900

  26. O.F. Syljuåsen, A.W. Sandvik, Phys. Rev. E 66, 046701 (2002). http://dx.doi.org/10.1103/PhysRevE.66.046701

    Article  ADS  Google Scholar 

  27. K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). http://dx.doi.org/10.1143/JPSJ.65.1604

    Article  ADS  Google Scholar 

  28. P. Sengupta, A.W. Sandvik, D.K. Campbell, Phys. Rev. B 65, 155113 (2002). http://dx.doi.org/10.1103/PhysRevB.65.155113

    Article  ADS  Google Scholar 

  29. H. Shao, W. Guo, A.W. Sandvik, Science 352, 213 (2016). http://dx.doi.org/10.1126/science.aad5007

    Article  ADS  MathSciNet  Google Scholar 

  30. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). http://dx.doi.org/10.1103/PhysRevLett.17.1133

    Article  ADS  Google Scholar 

  31. S. Chakravarty, B.I. Halperin, D.R. Nelson, Phys. Rev. Lett. 60, 1057 (1988). http://dx.doi.org/10.1103/PhysRevLett.60.1057

    Article  ADS  Google Scholar 

  32. A. Honecker, J. Schulenburg, J. Richter, J. Phys. Condens. Matter 16, S749 (2004). http://stacks.iop.org/0953-8984/16/i=11/a=025

    Article  ADS  Google Scholar 

  33. J. Richter, J. Schulenburg, A. Honecker, J. Schnack, H.-J. Schmidt, J. Phys. Condens. Matter 16, S779 (2004). http://stacks.iop.org/0953-8984/16/i=11/a=029

    Article  ADS  Google Scholar 

  34. J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001). http://dx.doi.org/10.1007/s10051-001-8701-6

    Article  ADS  Google Scholar 

  35. J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002). http://dx.doi.org/10.1103/PhysRevLett.88.167207

    Article  ADS  Google Scholar 

  36. B.-B. Mao, C. Cheng, F.-Z. Chen, H.-G. Luo, Sci. Rep. 7, 18104 (2017). http://dx.doi.org/10.1038/s41598-017-17887-w

    Article  ADS  Google Scholar 

  37. F. Heidrich-Meisner, A. Honecker, T. Vekua, Phys. Rev. B 74, 020403 (2006). http://dx.doi.org/10.1103/PhysRevB.74.020403

    Article  ADS  Google Scholar 

  38. R. Kenna, Universal Scaling Relations for Logarithmic-Correction Exponents, in Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory, vol. 3 (World Scientific Publishing Co, 2013), pp. 1–46. http://dx.doi.org/10.1142/9789814417891_0001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iaizzi, A. (2018). Saturation Transition in the 2D J-Q Model. In: Magnetic Field Effects in Low-Dimensional Quantum Magnets. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-01803-0_3

Download citation

Publish with us

Policies and ethics