Skip to main content

KinesTouch: 3D Force-Feedback Rendering for Tactile Surfaces

  • Conference paper
  • First Online:
Virtual Reality and Augmented Reality (EuroVR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11162))

Included in the following conference series:

Abstract

In this paper, we introduce the KinesTouch, a novel approach for tactile screen enhancement providing four types of haptic feedback with a single force-feedback device: compliance, friction, fine roughness, and shape. We present the design and implementation of a corresponding set of haptic effects as well as a proof-of-concept setup. Regarding friction in particular, we propose a novel effect based on large lateral motion that increases or diminishes the sliding velocity between the finger and the screen. A user study was conducted on this effect to confirm its ability to produce distinct sliding sensations. Visual cues were confirmed to influence sliding judgments, but further studies would help clarifying the role of tactile cues. Finally, we showcase several use cases illustrating the possibilities offered by the KinesTouch to enhance 2D and 3D interactions on tactile screens in various contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Impedance force-feedback devices provide forces to their end-effector, while measuring its position. Although they can’t act directly on position, they can still be used for pseudo position control with a high stiffness force linking the measured position to the desired one.

  2. 2.

    http://chai3d.org/download/license.

  3. 3.

    http://opensoundcontrol.org/introduction-osc.

References

  1. Altinsoy, M.E., Merchel, S.: Electrotactile feedback for handheld devices with touch screen and simulation of roughness. IEEE Trans. Haptics 5(1), 6–13 (2012)

    Article  Google Scholar 

  2. Ando, H., Kusachi, E., Watanabe, J.: Nail-mounted tactile display for boundary/texture augmentation. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology, pp. 292–293. ACM (2007)

    Google Scholar 

  3. Bau, O., Poupyrev, I., Israr, A., Harrison, C.: Teslatouch: electrovibration for touch surfaces. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, pp. 283–292 (2010)

    Google Scholar 

  4. Bensmaïa, S., Hollins, M.: Pacinian representations of fine surface texture. Percept. Psychophys. 67(5), 842–854 (2005)

    Article  Google Scholar 

  5. Brewster, S., Chohan, F., Brown, L.: Tactile feedback for mobile interactions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 159–162. ACM (2007)

    Google Scholar 

  6. Burch, D., Pawluk, D.: Using multiple contacts with texture-enhanced graphics. In: World Haptics Conference (WHC), pp. 287–292. IEEE (2011)

    Google Scholar 

  7. Chubb, E.C., Colgate, J.E., Peshkin, M.A.: Shiverpad: a glass haptic surface that produces shear force on a bare finger. IEEE Trans. Haptics 3(3), 189–198 (2010)

    Article  Google Scholar 

  8. Culbertson, H., Kuchenbecker, K.J.: Importance of matching physical friction, hardness, and texture in creating realistic haptic virtual surfaces. IEEE Trans. Haptics 10(1), 63–74 (2017)

    Article  Google Scholar 

  9. Darian-Smith, I., Johnson, K.O.: Thermal sensibility and thermoreceptors. J. Invest. Dermatol. 69(1), 146–153 (1977)

    Article  Google Scholar 

  10. Hausberger, T., Terzer, M., Enneking, F., Jonas, Z., Kim, Y.: SurfTics—kinesthetic and tactile feedback on a touchscreen device. In: 2017 IEEE World Haptics Conference (WHC), pp. 472–477. IEEE (2017)

    Google Scholar 

  11. Hollins, M., Bensmaïa, S., Risner, R.: The duplex theory of tactile texture perception. In: Proceedings of the 14th Annual Meeting of the International Society for Psychophysics, pp. 115–121 (1998)

    Google Scholar 

  12. Hollins, M., Risner, S.R.: Evidence for the duplex theory of tactile texture perception. Attention Percept. Psychophys. 62(4), 695–705 (2000)

    Article  Google Scholar 

  13. Israr, A., et al.: Po2: augmented haptics for interactive gameplay. In: ACM SIGGRAPH 2015 Emerging Technologies, p. 21 (2015)

    Google Scholar 

  14. Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001)

    Article  Google Scholar 

  15. Katz, D.: The World of Touch (le krueger, trans.). Rrlbaum, Mahwah (1925/1989). (Original work published 1925)

    Google Scholar 

  16. Kim, S.C., Han, B.K., Seo, J., Kwon, D.S.: Haptic interaction with virtual geometry on robotic touch surface. In: SIGGRAPH Asia 2014 Emerging Technologies, p. 8. ACM (2014)

    Google Scholar 

  17. Kim, S.C., Israr, A., Poupyrev, I.: Tactile rendering of 3D features on touch surfaces. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 531–538. ACM (2013)

    Google Scholar 

  18. Lederman, S.J., Klatzky, R.L.: Hand movements: a window into haptic object recognition. Cogn. Psychol. 19(3), 342–368 (1987)

    Article  Google Scholar 

  19. Levesque, V., et al.: Enhancing physicality in touch interaction with programmable friction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2481–2490. ACM (2011)

    Google Scholar 

  20. Maiero, J., Kruijff, E., Hinkenjann, A., Ghinea, G.: Forcetab: visuo-haptic interaction with a force-sensitive actuated tablet. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 169–174. IEEE (2017)

    Google Scholar 

  21. Makinen, V., Linjama, J., Gulzar, Z.: Tactile stimulation apparatus having a composite section comprising a semiconducting material 12 May 2011. http://www.google.ch/patents/US20110109588. US Patent App. 12/900,305

  22. Mullenbach, J., Johnson, D., Colgate, J.E., Peshkin, M.A.: Activepad surface haptic device. In: Haptics Symposium (HAPTICS), pp. 407–414. IEEE (2012)

    Google Scholar 

  23. Mullenbach, J., Shultz, C., Piper, A.M., Peshkin, M., Colgate, J.E.: Tpad fire: surface haptic tablet. In: Proceedings of HAID (2013)

    Google Scholar 

  24. Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6(1), 81–93 (2013)

    Article  Google Scholar 

  25. Romano, J.M., Kuchenbecker, K.J.: Creating realistic virtual textures from contact acceleration data. IEEE Trans. Haptics 5(2), 109–119 (2012)

    Article  Google Scholar 

  26. Saga, S., Deguchi, K.: Lateral-force-based 2.5-dimensional tactile display for touch screen. In: Haptics Symposium (HAPTICS), pp. 15–22. IEEE (2012)

    Google Scholar 

  27. Saga, S., Raskar, R.: Simultaneous geometry and texture display based on lateral force for touchscreen. In: World Haptics Conference (WHC), pp. 437–442. IEEE (2013)

    Google Scholar 

  28. Sinclair, M., Pahud, M., Benko, H.: Touchmover: actuated 3D touchscreen with haptic feedback. In: Proceedings of the 2013 ACM International Conference on Interactive Tabletops and Surfaces, pp. 287–296 (2013)

    Google Scholar 

  29. Sinclair, M., Pahud, M., Benko, H.: Touchmover 2.0-3D touchscreen with force feedback and haptic texture. In: Haptics Symposium (HAPTICS), pp. 1–6. IEEE (2014)

    Google Scholar 

  30. Takanaka, S., Yano, H., Iwata, H.: Multitouch haptic interface with movable touch screen. In: SIGGRAPH Asia 2015 Haptic Media and Contents Design, p. 13. ACM (2015)

    Google Scholar 

  31. Ushirobira, R., Efimov, D., Casiez, G., Roussel, N., Perruquetti, W.: A forecasting algorithm for latency compensation in indirect human-computer interactions. In: 2016 European Control Conference (ECC), pp. 1081–1086, June 2016. https://doi.org/10.1109/ECC.2016.7810433

  32. Vanacken, L., De Boeck, J., Coninx, K.: The phantom versus the falcon: force feedback magnitude effects on user’s performance during target acquisition. In: Nordahl, R., Serafin, S., Fontana, F., Brewster, S. (eds.) HAID 2010. LNCS, vol. 6306, pp. 179–188. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15841-4_19

    Chapter  Google Scholar 

  33. Wang, D., Tuer, K., Rossi, M., Shu, J.: Haptic overlay device for flat panel touch displays. In: Proceedings of 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2004, p. 290. IEEE (2004)

    Google Scholar 

  34. Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 1134–1139, May 1995. https://doi.org/10.1109/ROBOT.1995.525433

  35. Wiertlewski, M., Leonardis, D., Meyer, D.J., Peshkin, M.A., Colgate, J.E.: A high-fidelity surface-haptic device for texture rendering on bare finger. In: Auvray, M., Duriez, C. (eds.) EUROHAPTICS 2014. LNCS, vol. 8619, pp. 241–248. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44196-1_30

    Chapter  Google Scholar 

  36. Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-PaD: tactile pattern display through variable friction reduction. In: Second Joint EuroHaptics Conference, 2007 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2007, pp. 421–426. IEEE (2007)

    Google Scholar 

  37. Yang, Y., Zhang, Y., Hou, Z., Chen, Z., Lemaire-Semail, B.: Fingviewer: a new multi-touch force feedback touch screen. In: 2011 IEEE International Conference on Consumer Electronics (ICCE), pp. 837–838. IEEE (2011)

    Google Scholar 

  38. Yannier, N., Israr, A., Lehman, J.F., Klatzky, R.L.: Feelsleeve: haptic feedback to enhance early reading. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1015–1024. ACM (2015)

    Google Scholar 

  39. Yem, V., Kajimoto, H.: Wearable tactile device using mechanical and electrical stimulation for fingertip interaction with virtual world. In: Proceedings of VR, pp. 99–104. IEEE (2017)

    Google Scholar 

  40. Zeng, T., Lemaire-Semail, B., Giraud, F., Messaoudi, M., Bouscayrol, A.: Position control of a 3 DOF platform for haptic shape rendering. In: Power Electronics and Motion Control Conference (EPE/PEMC), p. LS6c-2. IEEE (2012)

    Google Scholar 

  41. Zhao, S., Israr, A., Klatzky, R.: Intermanual apparent tactile motion on handheld tablets. In: World Haptics Conference (WHC), pp. 241–247 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Costes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costes, A., Danieau, F., Argelaguet-Sanz, F., Lécuyer, A., Guillotel, P. (2018). KinesTouch: 3D Force-Feedback Rendering for Tactile Surfaces. In: Bourdot, P., Cobb, S., Interrante, V., kato, H., Stricker, D. (eds) Virtual Reality and Augmented Reality. EuroVR 2018. Lecture Notes in Computer Science(), vol 11162. Springer, Cham. https://doi.org/10.1007/978-3-030-01790-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01790-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01789-7

  • Online ISBN: 978-3-030-01790-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics