Skip to main content

Oral Nanotherapeutics for Cancer with Innovations in Lipid and Polymeric Nanoformulations

  • Chapter
  • First Online:
  • 1025 Accesses

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

Abstract

Lipid-based and polymeric nanotechnologies are poised to dramatically alter the landscape of treatment options for cancer and may hold unique potential for easily accessible, oral chemotherapy. A growing consensus points to nanoscale drug delivery systems as a promising therapeutic modality with enhanced efficacy and diminished side effects and with increasing evidence that these platforms can be engineered to facilitate transport of poorly bioavailable drug compounds and target neoplastic tissue with precision. Significant design and process challenges remain however. The emergence of oral chemotherapeutics in cancer treatment and the role lipid and polymer nanotechnologies play in its development are discussed in this chapter. Several recent research results provide rules of thumb for design and optimization of nanoparticles (i.e., physicochemical and surface properties) to achieve the goals of enhancing intestinal permeability, decreasing immunogenicity and extending circulation half-life, tumor targeting, and minimizing aggregation. Finally, characterization methods to assess drug release and pharmacokinetics will be examined, including dialysis systems, in vitro intestinal co-culture models, microfluidic artificial organs, and in vivo preclinical models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Findlay, M., von Minckwitz, G., Wardley, A.: Effective oral chemotherapy for breast cancer: pillars of strength. Ann. Oncol. 19(2), 212–222 (2008). https://doi.org/10.1093/annonc/mdm285

    Article  Google Scholar 

  2. Aisner, J.: Overview of the changing paradigm in cancer treatment: Oral chemotherapy. Am. J. Health Syst. Pharm. 64, S4–S7 (2007). https://doi.org/10.2146/ajhp070035

    Article  Google Scholar 

  3. Lu, Y., Park, K.: Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 453(1), 198–214 (2013). https://doi.org/10.1016/j.ijpharm.2012.08.042

    Article  Google Scholar 

  4. Kinch, M.S.: An overview of FDA-approved biologics medicines. Drug Discov. Today. 20(4), 393–398 (2015). https://doi.org/10.1016/j.drudis.2014.09.003

    Article  Google Scholar 

  5. Truong-Le, V., Lovalenti, P.M., Abdul-Fattah, A.M.: Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems. Adv. Drug Deliv. Rev. 93, 95–108 (2015). https://doi.org/10.1016/j.addr.2015.08.001

    Article  Google Scholar 

  6. Thanki, K., Gangwal, R.P., Sangamwar, A.T., Jain, S.: Oral delivery of anticancer drugs: Challenges and opportunities. J. Control. Release. 170(1), 15–40 (2013). https://doi.org/10.1016/j.jconrel.2013.04.020

    Article  Google Scholar 

  7. Wu, P., Nielsen, T.E., Clausen, M.H.: Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov. Today. 21(1), 5–10 (2016). https://doi.org/10.1016/j.drudis.2015.07.008

    Article  Google Scholar 

  8. Yun, Y., Cho, Y.W., Park, K.: Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 65(6), 822–832 (2013). https://doi.org/10.1016/j.addr.2012.10.007

    Article  Google Scholar 

  9. Cone, R.A.: Barrier properties of mucus. Adv. Drug Deliv. Rev. 61(2), 75–85 (2009). https://doi.org/10.1016/j.addr.2008.09.008

    Article  Google Scholar 

  10. Bansil, R., Turner, B.S.: Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11(2–3), 164–170 (2006). https://doi.org/10.1016/j.cocis.2005.11.001

    Article  Google Scholar 

  11. Malingre, M.M., Richel, D.J., Beijnen, J.H., Rosing, H., Koopman, F.J., Huinink, W.W.T.B., Schot, M.E., Schellens, J.H.M.: Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J. Clin. Oncol. 19(4), 1160–1166 (2001)

    Article  Google Scholar 

  12. Varma, M.V., Obach, R.S., Rotter, C., Miller, H.R., Chang, G., Steyn, S.J., El-Kattan, A., Troutman, M.D.: Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J. Med. Chem. 53(3), 1098–1108 (2010). https://doi.org/10.1021/jm901371v

    Article  Google Scholar 

  13. Jain, A.K., Swarnakar, N.K., Godugu, C., Singh, R.P., Jain, S.: The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 32(2), 503–515 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.037

    Article  Google Scholar 

  14. Van Cutsem, E., Twelves, C., Cassidy, J., Allman, D., Bajetta, E., Boyer, M., Bugat, R., Findlay, M., Frings, S., Jahn, M., McKendrick, J., Osterwalder, B., Perez-Manga, G., Rosso, R., Rougier, P., Schmiegel, W.H., Seitz, J.F., Thompson, P., Vieitez, J.M., Weitzel, C., Harper, P., Grp, X.C.C.S.: Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: Results of a large phase III study. J. Clin. Oncol. 19(21), 4097–4106 (2001)

    Article  Google Scholar 

  15. Herbrink, M., Nuijen, B., Schellens, J.H.M., Beijnen, J.H.: Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat. Rev. 41(5), 412–422 (2015). https://doi.org/10.1016/j.ctrv.2015.03.005

    Article  Google Scholar 

  16. Hu, X.Y., Huang, F., Szymusiak, M., Liu, Y., Wang, Z.J.: Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II alpha activity. J. Pharmacol. Exp. Ther. 352(3), 420–428 (2015). https://doi.org/10.1124/jpet.114.219303

    Article  Google Scholar 

  17. Hu, X.Y., Huang, F., Szymusiak, M., Tian, X.B., Liu, Y., Wang, Z.J.: PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKII alpha. Plos One. 11(1), e0146393 (2016). https://doi.org/10.1371/journal.pone.0146393

    Article  Google Scholar 

  18. Shen, H., Hu, X.Y., Szymusiak, M., Wang, Z.J., Liu, Y.: Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles. Mol. Pharm. 10(12), 4546–4551 (2013). https://doi.org/10.1021/mp400358z

    Article  Google Scholar 

  19. Szymusiak, M., Hu, X.Y., Plata, P.A.L., Ciupinski, P., Wang, Z.J., Liu, Y.: Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. Int. J. Pharm. 511(1), 415–423 (2016). https://doi.org/10.1016/j.ijpharm.2016.07.027

    Article  Google Scholar 

  20. Banerjee, A.A., Shen, H., Hautman, M., Anwer, J., Hong, S., Kapetanovic, I.M., Liu, Y., Lyubimov, A.V.: Enhanced oral bioavailability of the hydrophobic chemopreventive agent (Sr13668) in Beagle Dogs. Curr. Pharm. Biotechnol. 14(4), 464–469 (2013)

    Article  Google Scholar 

  21. Shen, H., Banerjee, A.A., Mlynarska, P., Hautman, M., Hong, S., Kapetanovic, I.M., Lyubimov, A.V., Liu, Y.: Enhanced oral bioavailability of a cancer preventive agent (SR13668) by employing polymeric nanoparticles with high drug loading. J. Pharm. Sci. 101(10), 3877–3885 (2012). https://doi.org/10.1002/jps.23269

    Article  Google Scholar 

  22. Pridgen, E.M., Alexis, F., Kuo, T.T., Levy-Nissenbaum, E., Karnik, R., Blumberg, R.S., Langer, R., Farokhzad, O.C.: Transepithelial transport of Fc-Targeted nanoparticles by the Neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5(213), 213ra167 (2013). https://doi.org/10.1126/scitranslmed.3007049

    Article  Google Scholar 

  23. Williams, A.C., Barry, B.W.: Penetration enhancers. Adv. Drug Deliv. Rev. 64, 128–137 (2012). https://doi.org/10.1016/j.addr.2012.09.032

    Article  Google Scholar 

  24. Davis, M.E., Chen, Z., Shin, D.M.: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7(9), 771–782 (2008). https://doi.org/10.1038/nrd2614

    Article  Google Scholar 

  25. Torchilin, V.: Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 63(3), 131–135 (2011). https://doi.org/10.1016/j.addr.2010.03.011

    Article  Google Scholar 

  26. Mamidi, R.N.V.S., Weng, S., Stellar, S., Wang, C., Yu, N., Huang, T., Tonelli, A.P., Kelley, M.F., Angiuoli, A., Fung, M.C.: Pharmacokinetics, efficacy and toxicity of different pegylated liposomal doxorubicin formulations in preclinical models: is a conventional bioequivalence approach sufficient to ensure therapeutic equivalence of pegylated liposomal doxorubicin products? Cancer Chemother. Pharmacol. 66(6), 1173–1184 (2010). https://doi.org/10.1007/s00280-010-1406-x

    Article  Google Scholar 

  27. Shen, H., Hong, S.Y., Prud'homme, R.K., Liu, Y.: Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles. J. Nanopart. Res. 13(9), 4109–4120 (2011). https://doi.org/10.1007/s11051-011-0354-7

    Article  Google Scholar 

  28. Sun, T.M., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M.X., Xia, Y.N.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53(46), 12320–12364 (2014). https://doi.org/10.1002/anie.201403036

    Article  Google Scholar 

  29. Parveen, S., Misra, R., Sahoo, S.K.: Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 8(2), 147–166 (2012). https://doi.org/10.1016/j.nano.2011.05.016

    Article  Google Scholar 

  30. Ponchel, G., Montisci, M.J., Dembri, A., Durrer, C., Duchene, D.: Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract. Eur. J. Pharm. Biopharm. 44(1), 25–31 (1997). https://doi.org/10.1016/S0939-6411(97)00098-2

    Article  Google Scholar 

  31. Tang, B.C., Dawson, M., Lai, S.K., Wang, Y.Y., Suk, J.S., Yang, M., Zeitlin, P., Boyle, M.P., Fu, J., Hanes, J.: Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl. Acad. Sci. U. S. A. 106(46), 19268–19273 (2009). https://doi.org/10.1073/pnas.0905998106

    Article  Google Scholar 

  32. Wang, Y.Y., Lai, S.K., Suk, J.S., Pace, A., Cone, R., Hanes, J.: Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “Slip” through the human mucus barrier. Angew Chem Int Ed Engl. 47(50), 9726–9729 (2008). https://doi.org/10.1002/anie.200803526

    Article  Google Scholar 

  33. Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013). https://doi.org/10.1016/j.addr.2012.09.037

    Article  Google Scholar 

  34. Barenholz, Y.: Doxil (R) - The first FDA-approved nano-drug: lessons learned. J. Control. Release. 160(2), 117–134 (2012). https://doi.org/10.1016/j.jconrel.2012.03.020

    Article  Google Scholar 

  35. Szebeni, J., Baranyi, L., Savay, S., Milosevits, J., Bunger, R., Laverman, P., Metselaar, J.M., Storm, G., Chanan-Khan, A., Liebes, L., Muggia, F.M., Cohen, R., Barenholz, Y., Alving, C.R.: Role of complement activation in hypersensitivity reactions to doxil and hynic PEG liposomes: experimental and clinical studies. J. Liposome Res. 12(1–2), 165–172 (2002). https://doi.org/10.1081/LPR-120004790

    Article  Google Scholar 

  36. Adlermoore, J.: Ambisome targeting to fungal-infections. Bone Marrow Transplant. 14, S3–S7 (1994)

    Google Scholar 

  37. Rosenthal, E., Poizot-Martin, I., Saint-Marc, T., Spano, J.P., Cacoub, P., Grp, D.S.: Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am. J. Clin. Oncol. 25(1), 57–59 (2002). https://doi.org/10.1097/00000421-200202000-00012

    Article  Google Scholar 

  38. Mayer, A.M.S., Glaser, K.B., Cuevas, C., Jacobs, R.S., Kem, W., Little, R.D., McIntosh, J.M., Newman, D.J., Potts, B.C., Shuster, D.E.: The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol. Sci. 31(6), 255–265 (2010). https://doi.org/10.1016/j.tips.2010.02.005

    Article  Google Scholar 

  39. Gabizon, A., Shmeeda, H., Barenholz, Y.: Pharmacokinetics of pegylated liposomal doxorubicin - Review of animal and human studies. Clin. Pharmacokinet. 42(5), 419–436 (2003). https://doi.org/10.2165/00003088-200342050-00002

    Article  Google Scholar 

  40. Grimaldi, N., Andrade, F., Segovia, N., Ferrer-Tasies, L., Sala, S., Veciana, J., Ventosa, N.: Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 45, 6520 (2016)

    Article  Google Scholar 

  41. Boulikas, T.: Clinical overview on Lipoplatin (TM): a successful liposomal formulation of cisplatin. Expert Opin. Investig. Drugs. 18(8), 1197–1218 (2009). https://doi.org/10.1517/13543780903114168

    Article  Google Scholar 

  42. Silverman, J.A., Deitcher, S.R.: Marqibo (R) (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 71(3), 555–564 (2013). https://doi.org/10.1007/s00280-012-2042-4

    Article  Google Scholar 

  43. Leonard, R.C.F., Williams, S., Tulpule, A., Levine, A.M., Oliveros, S.: Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet (TM)). Breast. 18(4), 218–224 (2009). https://doi.org/10.1016/j.breast.2009.05.004

    Article  Google Scholar 

  44. Schell, R.F., Sidone, B.J., Caron, W.P., Walsha, M.D., White, T.F., Zamboni, B.A., Ramanathan, R.K., Zamboni, W.C.: Meta-analysis of inter-patient pharmacokinetic variability of liposomal and non-liposomal anticancer agents. Nanomedicine. 10(1), 109–117 (2014). https://doi.org/10.1016/j.nano.2013.07.005

    Article  Google Scholar 

  45. Wang, A.Z., Langer, R., Farokhzad, O.C.: Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63(63), 185–198 (2012). https://doi.org/10.1146/annurev-med-040210-162544

    Article  Google Scholar 

  46. Maruyama, K.: Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 63(3), 161–169 (2011). https://doi.org/10.1016/j.addr.2010.09.003

    Article  Google Scholar 

  47. Torchilin, V.P.: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4(2), 145–160 (2005). https://doi.org/10.1038/nrd1632

    Article  Google Scholar 

  48. Kirpotin, D., Park, J.W., Hong, K., Zalipsky, S., Li, W.L., Carter, P., Benz, C.C., Papahadjopoulos, D.: Sterically stabilized Anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry. 36(1), 66–75 (1997). https://doi.org/10.1021/bi962148u

    Article  Google Scholar 

  49. Maruyama, K., Ishida, O., Takizawa, T., Moribe, K.: Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev. 40(1–2), 89–102 (1999). https://doi.org/10.1016/S0169-409x(99)00042-3

    Article  Google Scholar 

  50. Kumari, A., Yadav, S.K., Yadav, S.C.: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces. 75(1), 1–18 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  Google Scholar 

  51. Bermudez, H., Brannan, A.K., Hammer, D.A., Bates, F.S., Discher, D.E.: Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules. 35(21), 8203–8208 (2002). https://doi.org/10.1021/ma020669l

    Article  Google Scholar 

  52. Discher, D.E., Ahmed, F.: Polymersomes. Annu. Rev. Biomed. Eng. 8, 323–341 (2006). https://doi.org/10.1146/annurev.bioeng.8.061505.095838

    Article  Google Scholar 

  53. Ensign, L.M., Cone, R., Hanes, J.: Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64(6), 557–570 (2012). https://doi.org/10.1016/j.addr.2011.12.009

    Article  Google Scholar 

  54. Muller, C., Perera, G., Konig, V., Bernkop-Schnurch, A.: Development and in vivo evaluation of papain-functionalized nanoparticles. Eur. J. Pharm. Biopharm. 87(1), 125–131 (2014). https://doi.org/10.1016/j.ejpb.2013.12.012

    Article  Google Scholar 

  55. Tao, Y.Y., Lu, Y.F., Sun, Y.J., Gu, B., Lu, W.Y., Pan, J.: Development of mucoadhesive microspheres of acyclovir with enhanced bioavailability. Int. J. Pharm. 378(1–2), 30–36 (2009). https://doi.org/10.1016/j.ijpharm.2009.05.025

    Article  Google Scholar 

  56. Pauletti, G.M., Gangwar, S., Knipp, G.T., Nerurkar, M.M., Okumu, F.W., Tamura, K., Siahaan, T.J., Borchardt, R.T.: Structural requirements for intestinal absorption of peptide drugs. J. Control. Release. 41(1–2), 3–17 (1996). https://doi.org/10.1016/0168-3659(96)01352-1

    Article  Google Scholar 

  57. Bakhru, S.H., Furtado, S., Morello, A.P., Mathiowitz, E.: Oral delivery of proteins by biodegradable nanoparticles. Adv. Drug Deliv. Rev. 65(6), 811–821 (2013). https://doi.org/10.1016/j.addr.2013.04.006

    Article  Google Scholar 

  58. Lai, S.K., O'Hanlon, D.E., Harrold, S., Man, S.T., Wang, Y.Y., Cone, R., Hanes, J.: Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. U. S. A. 104(5), 1482–1487 (2007). https://doi.org/10.1073/pnas.0608611104

    Article  Google Scholar 

  59. Obach, R.S., Baxter, J.G., Liston, T.E., Silber, B.M., Jones, B.C., MacIntyre, F., Rance, D.J., Wastall, P.: The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 283(1), 46–58 (1997)

    Google Scholar 

  60. Amidon, G.L., Lennernas, H., Shah, V.P., Crison, J.R.: A theoretical basis for a biopharmaceutic drug classification - the correlation of in-Vitro drug product dissolution and in-Vivo bioavailability. Pharm. Res. 12(3), 413–420 (1995). https://doi.org/10.1023/A:1016212804288

    Article  Google Scholar 

  61. Martinez, M.N., G L, A.: A mechanistic approach to understandingthe factors affecting drug absorption:a review of fundamentals. J. Clin. Pharmacol. 42, 620–643 (2002)

    Article  Google Scholar 

  62. des Rieux, A., Ragnarsson, E.G., Gullberg, E., Préat, V., Schneider, Y.-J., Artursson, P.: Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm. Sci. 25(4), 455–465 (2005)

    Article  Google Scholar 

  63. des Rieux, A., Fievez, V., Théate, I., Mast, J., Préat, V., Schneider, Y.-J.: An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 30(5), 380–391 (2007)

    Article  Google Scholar 

  64. Antunes, F., Andrade, F., Araújo, F., Ferreira, D., Sarmento, B.: Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur. J. Pharm. Biopharm. 83(3), 427–435 (2013)

    Article  Google Scholar 

  65. Modi, S., Anderson, B.D.: Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol. Pharm. 10(8), 3076–3089 (2013). https://doi.org/10.1021/mp400154a

    Article  Google Scholar 

  66. Gupta, P.K., Hung, C.T., Perrier, D.G.: Quantitation of the Release of Doxorubicin from Colloidal Dosage Forms Using Dynamic Dialysis. J. Pharm. Sci. 76(2), 141–145 (1987). https://doi.org/10.1002/jps.2600760211

    Article  Google Scholar 

  67. Leo, E., Cameroni, R., Forni, F.: Dynamic dialysis for the drug release evaluation from doxorubicin-gelatin nanoparticle conjugates. Int. J. Pharm. 180(1), 23–30 (1999)

    Article  Google Scholar 

  68. Mogollon, C.: In Vitro Release of Curcumin from Polymeric Nanoparticles Using Two-Phase System. University of Illinois at Chicago (2016)

    Google Scholar 

  69. Shah, P., Fritz, J.V., Glaab, E., Desai, M.S., Greenhalgh, K., Frachet, A., Niegowska, M., Estes, M., Jager, C., Seguin-Devaux, C., Zenhausern, F., Wilmes, P.: A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7, 11535 (2016). https://doi.org/10.1038/ncomms11535

    Article  Google Scholar 

  70. Eisenstein, M.: ARTIFICIAL ORGANS Honey, I shrunk the lungs. Nature. 519(7544), S16–S18 (2015)

    Article  Google Scholar 

  71. Golla, K., Bhaskar, C., Ahmed, F., Kondapi, A.K.: A Target-Specific Oral Formulation of Doxorubicin-Protein Nanoparticles: Efficacy and Safety in Hepatocellular Cancer. J. Cancer. 4(8), 644–652 (2013). https://doi.org/10.7150/jca.7093

    Article  Google Scholar 

  72. Jain, S., Kumar, D., Swarnakar, N.K., Thanki, K.: Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 33(28), 6758–6768 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.026

    Article  Google Scholar 

  73. Vong, L.B., Yoshitomi, T., Matsui, H., Nagasaki, Y.: Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials. 55, 54–63 (2015). https://doi.org/10.1016/j.biomaterials.2015.03.037

    Article  Google Scholar 

  74. Bisht, S., Feldmann, G., Koorstra, J.B.M., Mullendore, M., Alvarez, H., Karikari, C., Rudek, M.A., Lee, C.K., Maitra, A., Maitra, A.: In vivo characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Mol. Cancer Ther. 7(12), 3878–3888 (2008). https://doi.org/10.1158/1535-7163.Mct-08-0476

    Article  Google Scholar 

  75. Qu, D., Wang, L.X., Liu, M., Shen, S.Y., Li, T., Liu, Y.P., Huang, M.M., Liu, C.Y., Chen, Y., Mo, R.: Oral Nanomedicine Based on Multicomponent Microemulsions for Drug-Resistant Breast Cancer Treatment. Biomacromolecules. 18(4), 1268–1280 (2017). https://doi.org/10.1021/acs.biomac.7b00011

    Article  Google Scholar 

  76. Groo, A.C., Bossiere, M., Trichard, L., Legras, P., Benoit, J.P., Lagarce, F.: In vivo evaluation of paclitaxel-loaded lipid nanocapsules after intravenous and oral administration on resistant tumor. Nanomedicine. 10(4), 589–601 (2015). https://doi.org/10.2217/nnm.14.124

    Article  Google Scholar 

  77. Wang, Y.C., Zhang, D.R., Liu, Z.P., Liu, G.P., Duan, C.X., Jia, L.J., Feng, F.F., Zhang, X.Y., Shi, Y.Q., Zhang, Q.: In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology. 21(15), 155104 (2010). https://doi.org/10.1088/0957-4484/21/15/155104

    Article  Google Scholar 

  78. Attili-Qadri, S., Karra, N., Nemirovski, A., Schwob, O., Talmon, Y., Nassar, T., Benita, S.: Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. Proc. Natl. Acad. Sci. U. S. A. 110(43), 17498–17503 (2013). https://doi.org/10.1073/pnas.1313839110

    Article  Google Scholar 

  79. Hu, Q.L., Wu, M., Fang, C., Cheng, C.Y., Zhao, M.M., Fang, W.H., Chu, P.K., Ping, Y., Tang, G.P.: Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15(4), 2732–2739 (2015). https://doi.org/10.1021/acs.nanolett.5b00570

    Article  Google Scholar 

  80. Claus, B.L., Underwood, D.J.: Discovery informatics: its evolving role in drug discovery. Drug Discov. Today. 7(18), 957–966. doi: Pii S1359-6446(02)02433-9 (2002). https://doi.org/10.1016/S1359-6446(02)02433-9

    Article  Google Scholar 

  81. Kaitin, K.I., DiMasi, J.A.: Pharmaceutical innovation in the 21st Century: new drug approvals in the First Decade, 2000-2009. Clin. Pharmacol. Ther. 89(2), 183–188 (2011). https://doi.org/10.1038/clpt.2010.286

    Article  Google Scholar 

  82. Chaubal, M.V.: Application of formulation technologies in lead candidate selection and optimization. Drug Discov. Today. 9(14), 603–609. doi: Pii S1359-6446(04)03171-X (2004). https://doi.org/10.1016/S1359-6446(04)03171-X

    Article  Google Scholar 

  83. Torchilin, V.P., Lukyanov, A.N.: Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov. Today. 8(6), 259–266. doi: Pii S1359-6446(03)02623-0 (2003). https://doi.org/10.1016/S1359-6446(03)02623-0

    Article  Google Scholar 

  84. Allen, T.M., Cullis, P.R.: Drug delivery systems: Entering the mainstream. Science. 303(5665), 1818–1822 (2004). https://doi.org/10.1126/science.1095833

    Article  Google Scholar 

  85. Sarmento, B., Martins, S., Ferreira, D., Souto, E.B.: Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine. 2(4), 743–749 (2007)

    Google Scholar 

  86. Knop, K., Hoogenboom, R., Fischer, D., Schubert, U.S.: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49(36), 6288–6308 (2010). https://doi.org/10.1002/anie.200902672

    Article  Google Scholar 

Download references

Acknowledgment

The research of nanoparticle design and production of Ying Liu is supported by NSF CMMI Nanomanufacturing Program (NSF CAREER 1350731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donovan, A.J., Liu, Y. (2019). Oral Nanotherapeutics for Cancer with Innovations in Lipid and Polymeric Nanoformulations. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics