Skip to main content

Concluding Remarks and theĀ Future of Nanotheranostics

  • Chapter
  • First Online:
Nanotheranostics for Cancer Applications

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

  • 1011 Accesses

Abstract

The year 2018 is predicted to have more than 1.7 million cases of cancer diagnosed with approximately 609,640 mortalities resulting in equivocating 1700 deaths per day [1]. Of these cancers diagnosed, the most fatal and prevalent are lung, prostate, and colorectal in men and breast, lung, and colorectal cancer in women [1]. Prostate cancer will account for 20% of the oncologic disease incidence in men, while breast cancer will account for 63,960 cases in women [1]. The daily diagnoses of 4700 affected individuals render this type of pathology prominent and in dire need of finding more ways to effectively diagnose and treat patients, thus reducing the mortality associated with these various types of cancer [1]. A summary hereto to elaborate and reflect upon these efforts to improve the lives of patients and the rationale behind such attempts to further improve on detection and diagnosis and effectively treat cancer pathologies are discussed as we conclude this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7ā€“30 (2018). https://doi.org/10.3322/caac.21442

    ArticleĀ  Google ScholarĀ 

  2. Bharathiraja, S., Bui, N.Q., Manivasagan, P., Moorthy, M.S., Mondal, S., Seo, H., Phuoc, N.T., Vy Phan, T.T., Kim, H., Lee, K.D., Oh, J.: Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci. Rep. 8(1), 500 (2018). https://doi.org/10.1038/s41598-017-18966-8

    ArticleĀ  Google ScholarĀ 

  3. Zhang, Q., Shan, W., Ai, C., Chen, Z., Zhou, T., Lv, X., Zhou, X., Ye, S., Ren, L., Wang, X.: Construction of multifunctional Fe3O4-MTX@HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy. Nano. 2(1), 87ā€“95 (2018). https://doi.org/10.7150/ntno.21942

    ArticleĀ  Google ScholarĀ 

  4. Liu, L., Ruan, Z., Yuan, P., Li, T., Yan, L.: Oxygen self-sufficient amphiphilic polypeptide nanoparticles encapsulating BODIPY for potential near infrared imaging-guided photodynamic therapy at low energy. Nano. 2(1), 59ā€“69 (2018). https://doi.org/10.7150/ntno.22754

    ArticleĀ  Google ScholarĀ 

  5. Jung, E., Kang, C., Lee, J., Yoo, D., Hwang, D.W., Kim, D., Park, S.C., Lim, S.K., Song, C., Lee, D.: Molecularly engineered theranostic nanoparticles for thrombosed vessels: H2O2-activatable contrast-enhanced photoacoustic imaging and antithrombotic therapy. ACS Nano. 12(1), 392ā€“401 (2018). https://doi.org/10.1021/acsnano.7b06560

    ArticleĀ  Google ScholarĀ 

  6. Sonali, V.M.K., Singh, R.P., Agrawal, P., Mehata, A.K., Pawde, D.M., Narendra, S.R., Muthu, M.S.: Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nano. 2(1), 70ā€“86 (2018). https://doi.org/10.7150/ntno.21638

    ArticleĀ  Google ScholarĀ 

  7. Yu, G., Yung, B.C., Zhou, Z., Mao, Z., Chen, X.: Artificial molecular machines in nanotheranostics. ACS Nano. 12(1), 7ā€“12 (2018). https://doi.org/10.1021/acsnano.7b07851

    ArticleĀ  Google ScholarĀ 

  8. Sun, Q., You, Q., Wang, J., Liu, L., Wang, Y., Song, Y., Cheng, Y., Wang, S., Tan, F., Li, N.: Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces. 10(2), 1963ā€“1975 (2018). https://doi.org/10.1021/acsami.7b13651

    ArticleĀ  Google ScholarĀ 

  9. Abraham, M.K., Peter, K., Michel, T., Wendel, H.P., Krajewski, S., Wang, X.: Nanoliposomes for safe and efficient therapeutic mRNA delivery: a step toward nanotheranostics in inflammatory and cardiovascular diseases as well as cancer. Nano. 1(2), 154ā€“165 (2017). https://doi.org/10.7150/ntno.19449

    ArticleĀ  Google ScholarĀ 

  10. Mieszawska, A.J., Mulder, W.J., Fayad, Z.A., Cormode, D.P.: Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharm. 10(3), 831ā€“847 (2013). https://doi.org/10.1021/mp3005885

    ArticleĀ  Google ScholarĀ 

  11. Peh, A.E., Leo, Y.S., Toh, C.S.: Current and nano-diagnostic tools for dengue infection. Front. Biosci. (Schol. Ed.). 3, 806ā€“821 (2011)

    ArticleĀ  Google ScholarĀ 

  12. Lammers, T., Kiessling, F., Hennink, W.E., Storm, G.: Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7(6), 1899ā€“1912 (2010). https://doi.org/10.1021/mp100228v

    ArticleĀ  Google ScholarĀ 

  13. Chen, D., Tang, Q., Zou, J., Yang, X., Huang, W., Zhang, Q., Shao, J., Dong, X.: pH-responsive PEG-doxorubicin-encapsulated Aza-BODIPY nanotheranostic agent for imaging-guided synergistic cancer therapy. Adv. Healthc. Mater. (2018). https://doi.org/10.1002/adhm.201701272

  14. Dong, X., Yin, W., Zhang, X., Zhu, S., He, X., Yu, J., Xie, J., Guo, Z., Yan, L., Liu, X., Wang, Q., Gu, Z., Zhao, Y.: Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl. Mater. Interfaces. 10(4), 4271ā€“4284 (2018). https://doi.org/10.1021/acsami.7b17506

    ArticleĀ  Google ScholarĀ 

  15. Li, X., Yu, S., Lee, D., Kim, G., Lee, B., Cho, Y., Zheng, B.Y., Ke, M.R., Huang, J.D., Nam, K.T., Chen, X., Yoon, J.: Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy. ACS Nano. 12(1), 681ā€“688 (2018). https://doi.org/10.1021/acsnano.7b07809

    ArticleĀ  Google ScholarĀ 

  16. Wang, Y., Xiong, Z., He, Y., Zhou, B., Qu, J., Shen, M., Shi, X., Xia, J.: Optimization of the composition and dosage of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool, tumor, and lymph node CT imaging. Mater. Sci. Eng. C Mater. Biol. Appl. 83, 9ā€“16 (2018). https://doi.org/10.1016/j.msec.2017.08.018

    ArticleĀ  Google ScholarĀ 

  17. Chen, H., Zhang, W., Zhu, G., Xie, J., Chen, X.: Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, (2017). https://doi.org/10.1038/natrevmats.2017.24

  18. Chuang, S.Y., Lin, C.H., Huang, T.H., Fang, J.Y.: Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials (Basel). 8(1), (2018). https://doi.org/10.3390/nano8010042

  19. VanDyke, D., Kyriacopulos, P., Yassini, B., Wright, A., Burkhart, E., Jacek, S., Pratt, M., Peterson, C.R., Rai, P.: Nanoparticle based combination treatments for targeting multiple hallmarks of cancer. Int. J. Nano Stud. Technol. Suppl 4, 1ā€“18 (2016). https://doi.org/10.19070/2167-8685-SI04001

    ArticleĀ  Google ScholarĀ 

  20. Tran, S., DeGiovanni, P.J., Piel, B., Rai, P.: Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med. 6(1), 44 (2017). https://doi.org/10.1186/s40169-017-0175-0

    ArticleĀ  Google ScholarĀ 

  21. Sneider, A., VanDyke, D., Paliwal, S., Rai, P.: Remotely triggered nano-theranostics for cancer applications. Nano. 1(1), 1ā€“22 (2017). https://doi.org/10.7150/ntno.17109

    ArticleĀ  Google ScholarĀ 

  22. Sneider, A., Jadia, R., Piel, B., VanDyke, D., Tsiros, C., Rai, P.: Engineering remotely triggered liposomes to target triple negative breast cancer. Oncomedicine. 2, 1ā€“13 (2017). https://doi.org/10.7150/oncm.17406

    ArticleĀ  Google ScholarĀ 

  23. Keservani, R.K., Sharma, A.K., Kesharwani, R.K.: Drug Delivery Approaches and Nanosystems, Volume 1: Novel Drug Carriers. CRC Press, New York (2017). https://www.taylorfrancis.com/books/e/9781351846707

  24. M. F.: Brown Symposium XXXVIĀ ā€“ Mauro Ferrari: ā€œNanomedicine and new societal horizons (trans: Ferrari M). Brown Symposium XXXVI USA (2014)

    Google ScholarĀ 

  25. Moore, R.: Nanomedicine: rethinking medical training. Med. Device Technol. 19(1), 50, 52ā€“53 (2008)

    Google ScholarĀ 

  26. Jiang, W., Kim, S., Zhang, X., Lionberger, R.A., Davit, B.M., Conner, D.P., Yu, L.X.: The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation. Int. J. Pharm. 418(2), 151ā€“160 (2011). https://doi.org/10.1016/j.ijpharm.2011.07.024

    ArticleĀ  Google ScholarĀ 

  27. Visser, S.A., Manolis, E., Danhof, M., Kerbusch, T.: Modeling and simulation at the interface of nonclinical and early clinical drug development. CPT Pharmacometrics. Syst. Pharmacol. 2, e30 (2013). https://doi.org/10.1038/psp.2013.3

    ArticleĀ  Google ScholarĀ 

  28. Zhuang, X., Lu, C.: PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B. 6(5), 430ā€“440 (2016). https://doi.org/10.1016/j.apsb.2016.04.004

    ArticleĀ  Google ScholarĀ 

  29. Bawa, R.: Regulating nanomedicineĀ ā€“ can the FDA handle it? Curr. Drug Deliv. 8(3), 227ā€“234 (2011)

    ArticleĀ  Google ScholarĀ 

  30. Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J., Corrie, S.R.: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373ā€“2387 (2016). https://doi.org/10.1007/s11095-016-1958-5

    ArticleĀ  Google ScholarĀ 

  31. Dawidczyk, C.M., Kim, C., Park, J.H., Russell, L.M., Lee, K.H., Pomper, M.G., Searson, P.C.: State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J. Control. Release. 187, 133ā€“144 (2014). https://doi.org/10.1016/j.jconrel.2014.05.036

    ArticleĀ  Google ScholarĀ 

  32. Eifler, A.C., Thaxton, C.S.: Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. Methods Mol. Biol. 726, 325ā€“338 (2011). https://doi.org/10.1007/978-1-61779-052-2_21

    ArticleĀ  Google ScholarĀ 

  33. Research GV: Nanomedicine market analysis by products, (therapeutics, regenerative medicine, diagnostics), by application, (clinical oncology, infectious diseases), by nanomolecule (Gold, Silver, Iron Oxide, Alumina), & Segment Forecasts, 2018Ā ā€“ 2025 (2017)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephanie A. Morris or Prakash Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kydd, J.L., Velpurisiva, P., Morris, S.A., Rai, P. (2019). Concluding Remarks and theĀ Future of Nanotheranostics. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics