Skip to main content

Image-Guided Drug Delivery

  • Chapter
  • First Online:
Nanotheranostics for Cancer Applications

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

  • 1244 Accesses

Abstract

From intraoperative guidance to remote drug release, the term image-guided drug delivery (IGDD) broadly refers to the utilization of imaging techniques to facilitate drug therapy. With the emerging advances in nanotechnology, the concept of IGDD has increasingly become associated with co-delivery of therapeutic and diagnostic elements incorporated into nanoscale carriers. These carriers, named theranostic nanoplatforms, are of special interest in the oncology field and have been studied in a broad range of applications, such as evaluation of therapeutic response, assessment of pharmacokinetics and biodistribution, and remote control of drug release. IGDD is also considered a promising technology for precision medicine, with the potential to promote individualized diagnosis and therapy for cancer patients on the basis of biomarker’s expression. The suitability of a nanoplatform for an application drives the engineering decisions behind the carrier’s characteristics, signaling agent and matching imaging modality. Herein, IGDD is discussed in the context of preclinical and clinical applications of theranostic nanoplatforms, highlighting molecular imaging modalities and cancer targeting strategies. In this chapter we also describe broader IGDD applications beyond the use of theranostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanza, G.M., Moonen, C., Baker, J.R., et al.: Assessing the barriers to image-guided drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6(1), 1–14 (2014)

    Article  Google Scholar 

  2. Tandon, P., Farahani, K.: NCI image-guided drug delivery summit. Cancer Res. 71(2), 314–317 (2011)

    Article  Google Scholar 

  3. Lammers, T., Kiessling, F., Hennink, W.E., et al.: Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7(6), 1899–1912 (2010)

    Article  Google Scholar 

  4. Ojha, T., Rizzo, L., Storm, G., et al.: Image-guided drug delivery: preclinical applications and clinical translation. Expert Opin. Drug Deliv. 12(8), 1203–1207 (2015)

    Article  Google Scholar 

  5. Perrault, S.D., Walkey, C., Jennings, T., et al.: Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9(5), 1909–1915 (2009)

    Article  Google Scholar 

  6. Dreher, M.R., Liu, W., Michelich, C.R., et al.: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 98(5), 335–344 (2006)

    Article  Google Scholar 

  7. Vinogradov, S.V., Bronich, T.K., Kabanov, A.V.: Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54(1), 135–147 (2002)

    Article  Google Scholar 

  8. Petros, R.A., DeSimone, J.M.: Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9(8), 615–627 (2010)

    Article  Google Scholar 

  9. Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)

    Google Scholar 

  10. Arias, J.L.: Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin. Drug Deliv. 8(12), 1589–1608 (2011)

    Article  Google Scholar 

  11. Mishra, P., Nayak, B., Dey, R.K.: PEGylation in anti-cancer therapy: an overview. Asian J. Pharm. Sci. 11(3), 337–348 (2016)

    Article  Google Scholar 

  12. Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Part 1), 6387–6392 (1986)

    Google Scholar 

  13. Maeda, H., Wu, J., Sawa, T., et al.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 65(1), 271–284 (2000)

    Article  Google Scholar 

  14. Yu, M.K., Park, J., Jon, S.: Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2(1), 3–44 (2012)

    Article  Google Scholar 

  15. Wang, L., Su, W., Liu, Z., et al.: CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials. 33(20), 5107–5114 (2012)

    Article  Google Scholar 

  16. Hadjipanayis, C.G., Machaidze, R., Kaluzova, M., et al.: EGFRvIII antibody–conjugated iron oxide nanoparticles for magnetic resonance imaging–guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 70(15), 6303–6312 (2010)

    Article  Google Scholar 

  17. Chen, F., Hong, H., Zhang, Y., et al.: In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 7(10), 9027–9039 (2013)

    Article  Google Scholar 

  18. Lowery, A., Onishko, H., Hallahan, D.E., et al.: Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors. J. Control. Release. 150(1), 117–124 (2011)

    Article  Google Scholar 

  19. Vu-Quang, H., Vinding, M.S., Nielsen, T., et al.: Theranostic tumor targeted nanoparticles combining drug delivery with dual near infrared and 19 F magnetic resonance imaging modalities. Nanomedicine. 12(7), 1873–1884 (2016)

    Article  Google Scholar 

  20. Yu, M.K., Kim, D., Lee, I.H., et al.: Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 7(15), 2241–2249 (2011)

    Article  Google Scholar 

  21. James, M.L., Gambhir, S.S.: A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92(2), 897–965 (2012)

    Article  Google Scholar 

  22. Mankoff, D.A.: A definition of molecular imaging. J. Nucl. Med. 48(6), 18N–21N (2007)

    Google Scholar 

  23. Li, S., Goins, B., Zhang, L., et al.: Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug. Chem. 23(6), 1322–1332 (2012)

    Article  Google Scholar 

  24. Taratula, O., Schumann, C., Naleway, M.A., et al.: A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol. Pharm. 10(10), 3946–3958 (2013)

    Article  Google Scholar 

  25. Peng, C.L., Shih, Y.H., Lee, P.C., et al.: Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano. 5(7), 5594–5607 (2011)

    Article  Google Scholar 

  26. Yang, X., Hong, H., Grailer, J.J., et al.: cRGD-functionalized, DOX-conjugated, and 64 Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 32(17), 4151–4160 (2011)

    Article  Google Scholar 

  27. Willmann, J.K., van Bruggen, N., Dinkelborg, L.M., et al.: Molecular imaging in drug development. Nat. Rev. Drug Discov. 7(7), 591–607 (2008)

    Article  Google Scholar 

  28. Weissleder, R., Pittet, M.J.: Imaging in the era of molecular oncology. Nature. 452(7187), 580–589 (2008)

    Article  Google Scholar 

  29. Rudin, M., Weissleder, R.: Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. 2(2), 123–131 (2003)

    Article  Google Scholar 

  30. Pysz, M.A., Gambhir, S.S., Willmann, J.K.: Molecular imaging: current status and emerging strategies. Clin. Radiol. 65(7), 500–516 (2010)

    Article  Google Scholar 

  31. Cassidy, P.J., Radda, G.K.: Molecular imaging perspectives. J. R. Soc. Interface. 2(3), 133–144 (2005)

    Article  Google Scholar 

  32. Chen, Y., Lian, G., Liao, C., et al.: Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J. Gastroenterol. 48(7), 809–821 (2013)

    Article  Google Scholar 

  33. McQuade, C., Al Zaki, A., Desai, Y., et al.: A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small. 11(7), 834–843 (2015)

    Article  Google Scholar 

  34. Liu, D., Wu, W., Chen, X., et al.: Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy. Nanoscale. 4(7), 2306–2310 (2012)

    Article  Google Scholar 

  35. Lee, G.Y., Qian, W.P., Wang, L., et al.: Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 7(3), 2078–2089 (2013)

    Article  Google Scholar 

  36. Kaittanis, C., Shaffer, T.M., Ogirala, A., et al.: Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun. 5, 3384 (2014)

    Article  Google Scholar 

  37. Ponce, A.M., Viglianti, B.L., Yu, D., et al.: Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J. Natl. Cancer Inst. 99(1), 53–63 (2007)

    Article  Google Scholar 

  38. Mouli, S.K., Tyler, P., McDevitt, J.L., et al.: Image-guided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors. ACS Nano. 7(9), 7724–7733 (2013)

    Article  Google Scholar 

  39. Zhang, R., Luo, K., Yang, J., et al.: Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J. Control. Release. 166(1), 66–74 (2013)

    Article  Google Scholar 

  40. Wu, W., Li, R., Bian, X., et al.: Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano. 3(9), 2740–2750 (2009)

    Article  Google Scholar 

  41. Lu, P.L., Chen, Y.C., Ou, T.W., et al.: Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials. 32(8), 2213–2221 (2011)

    Article  Google Scholar 

  42. Soundararajan, A., Bao, A., Phillips, W.T., et al.: [186 Re] Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl. Med. Biol. 36(5), 515–524 (2009)

    Article  Google Scholar 

  43. You, J., Zhang, R., Xiong, C., et al.: Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 72(18), 4777–4786 (2012)

    Article  Google Scholar 

  44. Xiao, Y., Hong, H., Javadi, A., et al.: Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials. 33(11), 3071–3082 (2012)

    Article  Google Scholar 

  45. Xiao, Y., Hong, H., Matson, V.Z., et al.: Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics. 2(8), 757–768 (2012)

    Article  Google Scholar 

  46. Zhou, J., Patel, T.R., Sirianni, R.W., et al.: Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc. Natl. Acad. Sci. U. S. A. 110(29), 11751–11756 (2013)

    Article  Google Scholar 

  47. David, S., Carmoy, N., Resnier, P., et al.: In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. Int. J. Pharm. 423(1), 108–115 (2012)

    Article  Google Scholar 

  48. Kim, S.H., Jeong, J.H., Lee, S.H., et al.: Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release. 129(2), 107–116 (2008)

    Article  Google Scholar 

  49. Mieszawska, A.J., Kim, Y., Gianella, A., et al.: Synthesis of polymer–lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug. Chem. 24(9), 1429–1434 (2013)

    Article  Google Scholar 

  50. Zhao, P., Zheng, M., Luo, Z., et al.: NIR-driven smart theranostic nanomedicine for on-demand drug release and synergistic antitumour therapy. Sci. Rep. 5, 14258 (2015)

    Article  Google Scholar 

  51. Wu, X., Sun, X., Guo, Z., et al.: In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J. Am. Chem. Soc. 136(9), 3579–3588 (2014)

    Article  Google Scholar 

  52. Mangraviti, A., Tzeng, S.Y., Kozielski, K.L., et al.: Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano. 9(2), 1236–1249 (2015)

    Article  Google Scholar 

  53. Feng, B., Xu, Z., Zhou, F., et al.: Near infrared light-actuated gold nanorods with cisplatin–polypeptide wrapping for targeted therapy of triple negative breast cancer. Nanoscale. 7(36), 14854–14864 (2015)

    Article  Google Scholar 

  54. Min, H.S., You, D.G., Son, S., et al.: Echogenic glycol chitosan nanoparticles for ultrasound-triggered cancer theranostics. Theranostics. 5(12), 1402–1418 (2015)

    Article  Google Scholar 

  55. Wang, X., Chen, H., Zhang, K., et al.: An intelligent nanotheranostic agent for targeting, redox-responsive ultrasound imaging, and imaging-guided high-intensity focused ultrasound synergistic therapy. Small. 10(7), 1403–1411 (2014)

    Article  Google Scholar 

  56. Zhou, H., Qian, W., Uckun, F.M., et al.: IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano. 9(8), 7976–7991 (2015)

    Article  Google Scholar 

  57. Hu, S.H., Liao, B.J., Chiang, C.S., et al.: Core-shell nanocapsules stabilized by single-component polymer and nanoparticles for magneto-chemotherapy/hyperthermia with multiple drugs. Adv. Mater. 24(27), 3627–3632 (2012)

    Article  Google Scholar 

  58. Li, Z., Wang, C., Cheng, L., et al.: PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials. 34(36), 9160–9170 (2013)

    Article  Google Scholar 

  59. de Smet, M., Langereis, S., van den Bosch, S., et al.: SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J. Control. Release. 169(1), 82–90 (2013)

    Article  Google Scholar 

  60. Fan, C.H., Ting, C.Y., Lin, H.J., et al.: SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials. 34(14), 3706–3715 (2013)

    Article  Google Scholar 

  61. Li, W.P., Su, C.H., Chang, Y.C., et al.: Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano. 10(2), 2017–2027 (2016)

    Article  Google Scholar 

  62. Rapoport, N., Nam, K.H., Gupta, R., et al.: Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J. Control. Release. 153(1), 4–15 (2011)

    Article  Google Scholar 

  63. Hendee, W.R., Morgan, C.J.: Magnetic resonance imaging part I—physical principles. West. J. Med. 141(4), 491–500 (1984)

    Google Scholar 

  64. Dale, B.M., Brown, M.A., Semelka, R.C.: MRI: Basic Principles and Applications, 5th edn. John Wiley & Sons, Hoboken (2015)

    Book  Google Scholar 

  65. Axel, L.: Relaxation times and NMR signals. Magn. Reson. Imaging. 2(2), 121–128 (1984)

    Article  Google Scholar 

  66. Pykett, I.L., Newhouse, J.H., Buonanno, F.S., et al.: Principles of nuclear magnetic resonance imaging. Radiology. 143(1), 157–168 (1982)

    Article  Google Scholar 

  67. Shokrollahi, H.: Contrast agents for MRI. Mater. Sci. Eng. C Mater. Biol. Appl. 33(8), 4485–4497 (2013)

    Article  Google Scholar 

  68. Burtea, C., Laurent, S., Vander Elst, L., et al.: Contrast agents: magnetic resonance. In: Semmler, W., Schwaiger, M. (eds.) Molecular imaging I, pp. 135–165. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  69. Buxton, R.B.: Introduction to functional magnetic resonance imaging: principles and techniques, 2nd edn. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  70. Kirsch, J.K.: Basic principles of magnetic resonance contrast agents. Top. Magn. Reson. Imaging. 3(2), 1–18 (1991)

    Article  Google Scholar 

  71. Na, H.B., Song, I.C., Hyeon, T.: Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21(21), 2133–2148 (2009)

    Article  Google Scholar 

  72. Jun, Y.W., Lee, J.H., Cheon, J.: Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 47(28), 5122–5135 (2008)

    Article  Google Scholar 

  73. Yu, M.K., Park, J., Jon, S.: Magnetic nanoparticles and their applications in image-guided drug delivery. Drug Deliv. Transl. Res. 2(1), 3–21 (2012)

    Article  Google Scholar 

  74. Talelli, M., Rijcken, C.J.F., Lammers, T., et al.: Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir. 25(4), 2060–2067 (2009)

    Article  Google Scholar 

  75. Maenosono, S., Suzuki, T., Saita, S.: Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J. Magn. Magn. Mater. 320(9), L79–L83 (2008)

    Article  Google Scholar 

  76. Lee, J.H., Huh, Y.M., Jun, Y.W., et al.: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13(1), 95–99 (2007)

    Article  Google Scholar 

  77. Tanaka, M., Nakashima, O., Wada, Y., et al.: Pathomorphological study of Kupffer cells in hepatocellular carcinoma and hyperplastic nodular lesions in the liver. Hepatology. 24(4), 807–812 (1996)

    Article  Google Scholar 

  78. Wang, Y.X.: Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 21(47), 13400–13402 (2015)

    Article  Google Scholar 

  79. Anselmo, A.C., Mitragotri, S.: Nanoparticles in the clinic. Bioeng. Transl. Med. 1(1), 10–29 (2016)

    Article  Google Scholar 

  80. Yang, K., Yang, G., Chen, L., et al.: FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials. 38, 1–9 (2015)

    Article  Google Scholar 

  81. Tyler, D.J., Robson, M.D., Henkelman, R.M., et al.: Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J. Magn. Reson. Imaging. 25(2), 279–289 (2007)

    Article  Google Scholar 

  82. Zhang, L., Zhong, X., Wang, L., et al.: T1-weighted ultrashort echo time method for positive contrast imaging of magnetic nanoparticles and cancer cells bound with the targeted nanoparticles. J. Magn. Reson. Imaging. 33(1), 194–202 (2011)

    Article  Google Scholar 

  83. Coleman, R.E.: Single photon emission computed tomography and positron emission tomography in cancer imaging. Cancer. 67(S4), 1261–1270 (1991)

    Article  Google Scholar 

  84. Liao, A.H., Wu, S.Y., Wang, H.E., et al.: Evaluation of 18 F-labeled targeted perfluorocarbon-filled albumin microbubbles as a probe for microUS and microPET in tumor-bearing mice. Ultrasonics. 53(2), 320–327 (2013)

    Article  Google Scholar 

  85. Almuhaideb, A., Papathanasiou, N., Bomanji, J.: 18F-FDG PET/CT imaging in oncology. Ann. Saudi Med. 31(1), 3–13 (2011)

    Article  Google Scholar 

  86. Welsh, J.S.: Beta radiation. Oncologist. 11(2), 181–183 (2006)

    Article  Google Scholar 

  87. Zanzonico, P.: Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat. Res. 177(4), 349–364 (2012)

    Article  Google Scholar 

  88. Smith, N.B., Webb, A.: Introduction to Medical Imaging: Physics, Engineering and Clinical Applications. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  89. Hicks, R.J., Hofman, M.S.: Is there still a role for SPECT–CT in oncology in the PET–CT era? Nat. Rev. Clin. Oncol. 9(12), 712–720 (2012)

    Article  Google Scholar 

  90. Patil, R.R., Yu, J., Banerjee, S.R., et al.: Probing in vivo trafficking of polymer/DNA micellar nanoparticles using SPECT/CT imaging. Mol. Ther. 19(9), 1626–1635 (2011)

    Article  Google Scholar 

  91. Livieratos, L.: Basic Principles of SPECT and PET Imaging. In: Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds.) Radionuclide and Hybrid Bone Imaging, pp. 345–359. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  92. Jaszczak, R.J., Coleman, R.E.: Single Photon Emission Computed Tomography (SPECT) Principles and Instrumentation. Investig. Radiol. 20(9), 897–910 (1985)

    Article  Google Scholar 

  93. Van Audenhaege, K., Van Holen, R., Vandenberghe, S., et al.: Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Med. Phys. 42(8), 4796–4813 (2015)

    Article  Google Scholar 

  94. Turkington, T.G., Coleman, R.E.: Clinical oncologic positron emission tomography: an introduction. Semin. Roentgenol. 37(2), 102–109 (2002)

    Article  Google Scholar 

  95. Rahmim, A., Zaidi, H.: PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29(3), 193–207 (2008)

    Article  Google Scholar 

  96. Weissleder, R., Ntziachristos, V.: Shedding light onto live molecular targets. Nat. Med. 9(1), 123–128 (2003)

    Article  Google Scholar 

  97. Mourant, J.R., Freyer, J.P., Hielscher, A.H., et al.: Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37(16), 3586–3593 (1998)

    Article  Google Scholar 

  98. Tuchin, V.V.: Light scattering study of tissues. Physics-Uspekhi. 40(5), 495–515 (1997)

    Article  Google Scholar 

  99. Beauvoit, B., Chance, B.: Time-resolved spectroscopy of mitochondria, cells and tissues under normal and pathological conditions. In: Saks, V.A., et al. (eds.) Bioenergetics of the Cell: Quantitative Aspects, pp. 445–455. Springer, New York (1998)

    Chapter  Google Scholar 

  100. Haringsma, J., Tytgat, G.N.J.: Fluorescence and autofluorescence. Best Pract. Res. Clin. Gastroenterol. 13(1), 1–10 (1999)

    Article  Google Scholar 

  101. Zonios, G., Bykowski, J., Kollias, N.: Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Invest. Dermatol. 117(6), 1452–1457 (2001)

    Article  Google Scholar 

  102. Rich, R.M., Stankowska, D.L., Maliwal, B.P., et al.: Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore. Anal. Bioanal. Chem. 405(6), 2065–2075 (2013)

    Article  Google Scholar 

  103. Wang, R.K.: Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues. Phys. Med. Biol. 47(13), 2281–2299 (2002)

    Article  Google Scholar 

  104. Knappe, V., Frank, F., Rohde, E.: Principles of lasers and biophotonic effects. Photomed. Laser Surg. 22(5), 411–417 (2004)

    Article  Google Scholar 

  105. Zhou, F., Xing, D., Ou, Z., et al.: Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14(2), 021009 (2009)

    Article  Google Scholar 

  106. Ward, W.W.: Energy transfer processes in bioluminescence. In: Smith, K.C. (ed.) Photochemical and Photobiological Reviews, pp. 1–57. Springer, New York (1979)

    Google Scholar 

  107. Pittet, M.J., Weissleder, R.: Intravital imaging. Cell. 147(5), 983–991 (2011)

    Article  Google Scholar 

  108. Amornphimoltham, P., Masedunskas, A., Weigert, R.: Intravital microscopy as a tool to study drug delivery in preclinical studies. Adv. Drug Deliv. Rev. 63(1), 119–128 (2011)

    Article  Google Scholar 

  109. Kirui, D.K., Ferrari, M.: Intravital microscopy imaging approaches for image-guided drug delivery systems. Curr. Drug Targets. 16(6), 528–541 (2015)

    Article  Google Scholar 

  110. Alieva, M., Ritsma, L., Giedt, R.J., et al.: Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital. 3(2), e29917 (2014)

    Article  Google Scholar 

  111. Lehr, H.A., Leunig, M., Menger, M.D., et al.: Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am. J. Pathol. 143(4), 1055–1062 (1993)

    Google Scholar 

  112. Kienast, Y., Von Baumgarten, L., Fuhrmann, M., et al.: Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16(1), 116–122 (2010)

    Article  Google Scholar 

  113. Stuker, F., Ripoll, J., Rudin, M.: Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics. 3(2), 229–274 (2011)

    Article  Google Scholar 

  114. Ntziachristos, V., Ripoll, J., Wang, L.V., et al.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23(3), 313–320 (2005)

    Article  Google Scholar 

  115. Vonwil, D., Christensen, J., Fischer, S., et al.: Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats. Mol. Imaging Biol. 16(3), 350–361 (2014)

    Article  Google Scholar 

  116. Nahrendorf, M., Waterman, P., Thurber, G., et al.: Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009)

    Article  Google Scholar 

  117. Ale, A., Ermolayev, V., Herzog, E., et al.: FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat. Methods. 9(6), 615–620 (2012)

    Article  Google Scholar 

  118. Ponta, H., Sherman, L., Herrlich, P.A.: CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4(1), 33–45 (2003)

    Article  Google Scholar 

  119. Ziskin, M.C.: Fundamental physics of ultrasound and its propagation in tissue. Radiographics. 13(3), 705–709 (1993)

    Article  Google Scholar 

  120. Chan, V., Perlas, A.: Basics of ultrasound imaging. In: Narouze, S.N. (ed.) Atlas of Ultrasound-Guided Procedures in Interventional Pain Management, pp. 13–19. Springer, New York (2011)

    Chapter  Google Scholar 

  121. Cootney, R.W.: Ultrasound imaging: principles and applications in rodent research. ILAR J. 42(3), 233–247 (2001)

    Article  Google Scholar 

  122. Otto, C.M.: Principles of echocardiographic image acquisition and Doppler analysis. In: Otto, C.M. (ed.) Textbook of Clinical Echocardiography, 5th edn, pp. 1–30. WB Saunders, Philadelphia (2000)

    Google Scholar 

  123. Sirsi, S.R., Borden, M.A.: Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 1(1–2), 3–17 (2009)

    Article  Google Scholar 

  124. Unnikrishnan, S., Klibanov, A.L.: Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. AJR Am. J. Roentgenol. 199(2), 292–299 (2012)

    Article  Google Scholar 

  125. Ferrara, K., Pollard, R., Borden, M.: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007)

    Article  Google Scholar 

  126. Hernot, S., Klibanov, A.L.: Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 60(10), 1153–1166 (2008)

    Article  Google Scholar 

  127. Airan, R.D., Meyer, R.A., Ellens, N.P.K., et al.: Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 17(2), 652–659 (2017)

    Article  Google Scholar 

  128. Borden, M.A., Qin, S., Ferrara, K.W.: Ultrasound contrast agents. In: Weissleder, R., Ross, B.D., Rehemtulla, A., Gambhir, S.S. (eds.) Molecular Imaging: Principles and Practice, pp. 425–444. PMPH-USA, Shelton (2010)

    Google Scholar 

  129. Rapoport, N.: Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4(5), 492–510 (2012)

    Article  Google Scholar 

  130. Kinoshita, M., McDannold, N., Jolesz, F.A., et al.: Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc. Natl. Acad. Sci. U. S. A. 103(31), 11719–11723 (2006)

    Article  Google Scholar 

  131. Meairs, S.: Facilitation of drug transport across the blood–brain barrier with ultrasound and microbubbles. Pharmaceutics. 7(3), 275–293 (2015)

    Article  Google Scholar 

  132. Mesiwala, A.H., Farrell, L., Wenzel, H.J., et al.: High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med. Biol. 28(3), 389–400 (2002)

    Article  Google Scholar 

  133. Park, E.J., Zhang, Y.Z., Vykhodtseva, N., et al.: Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J. Control. Release. 163(3), 277–284 (2012)

    Article  Google Scholar 

  134. Huang, S.L., Hamilton, A.J., Nagaraj, A., et al.: Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents. J. Pharm. Sci. 90(12), 1917–1926 (2001)

    Article  Google Scholar 

  135. Alkan-Onyuksel, H., Demos, S.M., Lanza, G.M., et al.: Development of inherently echogenic liposomes as an ultrasonic contrast agent. J. Pharm. Sci. 85(5), 486–490 (1996)

    Article  Google Scholar 

  136. Demos, S.M., Önyüsel, H., Gilbert, J., et al.: In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement. J. Pharm. Sci. 86(2), 167–171 (1997)

    Article  Google Scholar 

  137. Negishi, Y., Yamane, M., Kurihara, N., et al.: Enhancement of blood–brain barrier permeability and delivery of antisense oligonucleotides or plasmid DNA to the brain by the combination of Bubble liposomes and high-intensity focused ultrasound. Pharmaceutics. 7(3), 344–362 (2015)

    Article  Google Scholar 

  138. Liu, J., Levine, A.L., Mattoon, J.S., et al.: Nanoparticles as image enhancing agents for ultrasonography. Phys. Med. Biol. 51(9), 2179–2189 (2006)

    Article  Google Scholar 

  139. Ophir, J., Gobuty, A., McWhirt, R.E., et al.: Ultrasonic backscatter from contrast producing collagen microspheres. Ultrason. Imaging. 2(1), 67–77 (1980)

    Article  Google Scholar 

  140. Parker, K.J., Tuthill, T.A., Lerner, R.M., et al.: A particulate contrast agent with potential for ultrasound imaging of liver. Ultrasound Med. Biol. 13(9), 555–566 (1987)

    Article  Google Scholar 

  141. Paoli, E.E., Kruse, D.E., Seo, J.W., et al.: An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: importance of formulation. J. Control. Release. 143(1), 13–22 (2010)

    Article  Google Scholar 

  142. Koukourakis, M.I., Koukouraki, S., Fezoulidis, I., et al.: High intratumoural accumulation of stealth® liposomal doxorubicin (Caelyx®) in glioblastomas and in metastatic brain tumours. Br. J. Cancer. 83(10), 1281–1286 (2000)

    Article  Google Scholar 

  143. Koukourakis, M.I., Koukouraki, S., Giatromanolaki, A., et al.: High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas: rationale for combination with radiotherapy. Acta Oncol. 39(2), 207–211 (2000)

    Article  Google Scholar 

  144. Seymour, L.W., Ferry, D.R., Anderson, D., et al.: Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol. 20(6), 1668–1676 (2002)

    Article  Google Scholar 

  145. Collins, J.M.: Pharmacologic rationale for regional drug delivery. J. Clin. Oncol. 2(5), 498–504 (1984)

    Article  Google Scholar 

  146. Zamboni, C.G., Green, J.J., Higgins, L.J.: Local delivery of gene-based therapy for hepatocellular carcinoma: the TACE of the future? Intervent. Oncol. 360. 3(11), E121–E136 (2015)

    Google Scholar 

  147. Bierman, H.R., Byron, R.L., Kelley, K.H., et al.: Studies on the blood supply of tumors in man. III. Vascular patterns of the liver by hepatic arteriography in vivo. J. Natl. Cancer Inst. 12(1), 107–131 (1951)

    Google Scholar 

  148. Breedis, C., Young, G.: The blood supply of neoplasms in the liver. Am. J. Pathol. 30(5), 969–977 (1954)

    Google Scholar 

  149. Vogl, T.J., Naguib, N.N., Nour-Eldin, N.E., et al.: Review on transarterial chemoembolization in hepatocellular carcinoma: palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur. J. Radiol. 72(3), 505–516 (2009)

    Article  Google Scholar 

  150. Van Ha, T.G.: Transarterial chemoembolization for hepatocellular carcinoma. Semin Intervent. Radiol. 26(3), 270–275 (2009)

    Article  Google Scholar 

  151. Vogelbaum, M.A., Aghi, M.K.: Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 17(S2), ii3–ii8 (2015)

    Article  Google Scholar 

  152. Healy, A.T., Vogelbaum, M.A.: Convection-enhanced drug delivery for gliomas. Surg. Neurol. Int. 6(S1), S59–S67 (2014)

    Google Scholar 

  153. Roth, J., Beni-Adani, L., Biyani, N., et al.: Classical and real-time neuronavigation in pediatric neurosurgery. Childs Nerv. Syst. 22(9), 1065–1071 (2006)

    Article  Google Scholar 

  154. Mavrogenis, A.F., Savvidou, O.D., Mimidis, G., et al.: Computer-assisted navigation in orthopedic surgery. Orthopedics. 36(8), 631–642 (2013)

    Article  Google Scholar 

  155. Hinsche, A.F., Smith, R.M.: Image-guided surgery. Curr. Orthop. 15(4), 296–303 (2001)

    Article  Google Scholar 

  156. Widmann, G., Schullian, P., Ortler, M., et al.: Frameless stereotactic targeting devices: technical features, targeting errors and clinical results. Int. J. Med. Robot. 8(1), 1–16 (2012)

    Article  Google Scholar 

  157. Enchev, Y.: Neuronavigation: geneology, reality, and prospects. Neurosurg. Focus. 27(3), E11 (2009)

    Article  Google Scholar 

  158. Bulent Omay, S., Vogelbaum, M.A.: Stereotactic brain biopsy. In: Mehta, M.P., Chang, S.M., Guha, A., Newton, H.B., Vogelbaum, M.A. (eds.) Principles and Practice of Neuro-Oncology: A Multidisciplinary Approach, pp. 400–406. Demos Medical Publishing, New York (2010)

    Google Scholar 

  159. Goldsmith, M.M.: Image-guided systems in neurotology/skull base surgery. In: Gulya, A.J., Minor, L.B., Poe, D. (eds.) Glasscock-Shambaugh Surgery of the Ear, 6th edn, pp. 369–376. PMPH-USA, Shelton (2010)

    Google Scholar 

  160. Roberts, D.W., Strohbehn, J.W., Hatch, J.F., et al.: A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J. Neurosurg. 65(4), 545–549 (1986)

    Article  Google Scholar 

  161. Mezger, U., Jendrewski, C., Bartels, M.: Navigation in surgery. Langenbecks Arch. Surg. 398(4), 501–514 (2013)

    Article  Google Scholar 

  162. Orringer, D.A., Golby, A., Jolesz, F.: Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev. Med. Devices. 9(5), 491–500 (2012)

    Article  Google Scholar 

  163. Roberts, D.W., Hartov, A., Kennedy, F.E., et al.: Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery. 43(4), 749–758 (1998)

    Article  Google Scholar 

  164. Nimsky, C., Ganslandt, O., Cerny, S., et al.: Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery. 47(5), 1070–1080 (2000)

    Article  Google Scholar 

  165. Belykh, E., Martirosyan, N.L., Yagmurlu, K., et al.: Intraoperative fluorescence imaging for personalized brain tumor resection: current state and future directions. Front. Surg. 3, 55 (2016)

    Article  Google Scholar 

  166. Stummer, W., Reulen, H.J., Meinel, T., et al.: Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 62(3), 564–576 (2008)

    Article  Google Scholar 

  167. Stummer, W., Pichlmeier, U., Meinel, T., et al.: Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7(5), 392–401 (2006)

    Article  Google Scholar 

  168. Barone, D.G., Lawrie, T.A., Hart, M.G.: Image guided surgery for the resection of brain tumours. Cochrane Database Syst. Rev. 1, CD009685 (2014)

    Google Scholar 

  169. Haque, R., Contreras, R., McNicoll, M.P., et al.: Surgical margins and survival after head and neck cancer surgery. BMC Ear Nose Throat Disord. 6(1), 2 (2006)

    Article  Google Scholar 

  170. Meric, F., Mirza, N.Q., Vlastos, G., et al.: Positive surgical margins and ipsilateral breast tumor recurrence predict disease-specific survival after breast-conserving therapy. Cancer. 97(4), 926–933 (2003)

    Article  Google Scholar 

  171. Nagtegaal, I.D., Quirke, P.: What is the role for the circumferential margin in the modern treatment of rectal cancer? J. Clin. Oncol. 26(2), 303–312 (2008)

    Article  Google Scholar 

  172. Dotan, Z.A., Kavanagh, K., Yossepowitch, O., et al.: Positive surgical margins in soft tissue following radical cystectomy for bladder cancer and cancer specific survival. J. Urol. 178(6), 2308–2313 (2007)

    Article  Google Scholar 

  173. Wieder, J.A., Soloway, M.S.: Incidence, etiology, location, prevention and treatment of positive surgical margins after radical prostatectomy for prostate cancer. J. Urol. 160(2), 299–315 (1998)

    Article  Google Scholar 

  174. Snijder, R.J., de la Rivière, A.B., Elbers, H.J.J., et al.: Survival in resected stage I lung cancer with residual tumor at the bronchial resection margin. Ann. Thorac. Surg. 65(1), 212–216 (1998)

    Google Scholar 

  175. Mallidi, S., Spring, B.Q., Hasan, T.: Optical imaging, photodynamic therapy and optically-triggered combination treatments. Cancer J. 21(3), 194–205 (2015)

    Article  Google Scholar 

  176. Ishizuka, M., Abe, F., Sano, Y., et al.: Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int. Immunopharmacol. 11(3), 358–365 (2011)

    Article  Google Scholar 

  177. Wang, W., Tabu, K., Hagiya, Y., et al.: Enhancement of 5-aminolevulinic acid-based fluorescence detection of side population-defined glioma stem cells by iron chelation. Sci. Rep. 7, 42070 (2017)

    Article  Google Scholar 

  178. Eljamel, M.S., Goodman, C., Moseley, H.: ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre phase III randomised controlled trial. Lasers Med. Sci. 23(4), 361–367 (2008)

    Article  Google Scholar 

  179. Rigual, N.R., Shafirstein, G., Frustino, J., et al.: Adjuvant intraoperative photodynamic therapy in head and neck cancer. JAMA Otolaryngol. Head Neck Surg. 139(7), 706–711 (2013)

    Article  Google Scholar 

  180. Bellnier, D.A., Greco, W.R., Nava, H., et al.: Mild skin photosensitivity in cancer patients following injection of Photochlor (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a; HPPH) for photodynamic therapy. Cancer Chemother. Pharmacol. 57(1), 40–45 (2006)

    Article  Google Scholar 

  181. Bader, M.J., Stepp, H., Beyer, W., et al.: Photodynamic therapy of bladder cancer–a phase I study using hexaminolevulinate (HAL). Urol. Oncol. 31(7), 1178–1183 (2013)

    Article  Google Scholar 

  182. Lange, N., Jichlinski, P., Zellweger, M., et al.: Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study. Br. J. Cancer. 80(1–2), 185–193 (1999)

    Article  Google Scholar 

  183. Gupta, T., Narayan, C.A.: Image-guided radiation therapy: physician’s perspectives. J. Med. Phys. 37(4), 174–182 (2012)

    Article  Google Scholar 

  184. Dawson, L.A., Sharpe, M.B.: Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol. 7(10), 848–858 (2006)

    Article  Google Scholar 

  185. Folkert, M.R., Timmerman, R.D.: Stereotactic ablative body radiosurgery (SABR) or stereotactic body radiation therapy (SBRT). Adv. Drug Deliv. Rev. 109, 3–14 (2016)

    Article  Google Scholar 

  186. Barnett, G.C., West, C.M.L., Dunning, A.M., et al.: Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer. 9(2), 134–142 (2009)

    Article  Google Scholar 

  187. McMahon, S.J., Paganetti, H., Prise, K.M.: Optimising element choice for nanoparticle radiosensitisers. Nanoscale. 8(1), 581–589 (2016)

    Article  Google Scholar 

  188. Lux, F., Sancey, L., Bianchi, A., et al.: Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine (Lond.). 10(11), 1801–1815 (2015)

    Article  Google Scholar 

  189. McQuaid, H.N., Muir, M.F., Taggart, L.E., et al.: Imaging and radiation effects of gold nanoparticles in tumour cells. Sci. Rep. 6, 19442 (2016)

    Article  Google Scholar 

  190. Joh, D.Y., Kao, G.D., Murty, S., et al.: Theranostic gold nanoparticles modified for durable systemic circulation effectively and safely enhance the radiation therapy of human sarcoma cells and tumors. Transl. Oncol. 6(6), 722–731 (2013)

    Article  Google Scholar 

  191. Detappe, A., Thomas, E., Tibbitt, M.W., et al.: Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance–computed tomography image guided radiation therapy. Nano Lett. 17(3), 1733–1740 (2017)

    Article  Google Scholar 

  192. Retif, P., Pinel, S., Toussaint, M., et al.: Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics. 5(9), 1030–1044 (2015)

    Article  Google Scholar 

  193. Klein, S., Sommer, A., Distel, L.V.R., et al.: Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem. Biophys. Res. Commun. 425(2), 393–397 (2012)

    Article  Google Scholar 

  194. Emerit, J., Beaumont, C., Trivin, F.: Iron metabolism, free radicals, and oxidative injury. Biomed. Pharmacother. 55(6), 333–339 (2001)

    Article  Google Scholar 

  195. Voinov, M.A., Pagán, J.O.S., Morrison, E., et al.: Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J. Am. Chem. Soc. 133(1), 35–41 (2010)

    Article  Google Scholar 

  196. Maharaj, A.R., Edginton, A.N.: Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst. Pharmacol. 3(11), 1–13 (2014)

    Article  Google Scholar 

  197. Derendorf, H., Meibohm, B.: Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm. Res. 16(2), 176–185 (1999)

    Article  Google Scholar 

  198. Lin, P., Chen, J.W., Chang, L.W., et al.: Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ. Sci. Technol. 42(16), 6264–6270 (2008)

    Article  Google Scholar 

  199. Lobo, E.D., Balthasar, J.P.: Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS J. 4(4), 212–222 (2002)

    Article  Google Scholar 

  200. Soininen, S.K., Vellonen, K.S., Heikkinen, A.T., et al.: Intracellular PK/PD relationships of free and liposomal doxorubicin: quantitative analyses and PK/PD modeling. Mol. Pharm. 13(4), 1358–1365 (2016)

    Article  Google Scholar 

  201. Eliaz, R.E., Nir, S., Marty, C., et al.: Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res. 64(2), 711–718 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan J. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamboni, C.G., Farahani, K., Green, J.J. (2019). Image-Guided Drug Delivery. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics