Skip to main content

Topical and Transdermal Nanomedicines for Cancer Therapy

  • Chapter
  • First Online:

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

Abstract

Topical and transdermal nanomedicine systems have attracted considerable attention in anticancer therapy. The administration route toward the skin can transport active drugs through the skin barrier and control their entrance into the blood circulation system. Agents delivered through this platform are capable of escaping the first pass of metabolism, which causes physiological degradation of the agent and systemic clearance. Apart from methodology to facilitate the delivery of drug transdermally, the formulation of nanomedicines to preserve the therapeutic’s property is also critical for overall clinical outcomes. This strategy improves the efficiency of encapsulated drugs by potentiating the targeting capability and tailoring the release kinetics toward specific tumors. This chapter summarizes the principles and the recent innovations in the field of transdermal nanomedicine together with opportunities and challenges in clinical translation. For the continued development of novel transdermal devices incorporating nanotechnology, a deeper understanding is required in rational nanoparticle design and their pharmacokinetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prausnitz, M.R., Mitragotri, S., Langer, R.: Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3(2), 115–124 (2004). https://doi.org/10.1038/nrd1304

    Article  Google Scholar 

  2. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007). https://doi.org/10.1038/nnano.2007.387

    Article  Google Scholar 

  3. Mitragotri, S., Anderson, D.G., Chen, X., Chow, E.K., Ho, D., Kabanov, A.V., Karp, J.M., Kataoka, K., Mirkin, C.A., Petrosko, S.H., Shi, J., Stevens, M.M., Sun, S., Teoh, S., Venkatraman, S.S., Xia, Y., Wang, S., Gu, Z., Xu, C.: Accelerating the translation of nanomaterials in biomedicine. ACS Nano. 9(7), 6644–6654 (2015). https://doi.org/10.1021/acsnano.5b03569

    Article  Google Scholar 

  4. Sonderskov, J., Olsen, J., Sabroe, S., Meillier, L., Overvad, K.: Nicotine patches in smoking cessation: a randomized trial among over-the-counter customers in Denmark. Am. J. Epidemiol. 145(4), 309–318 (1997). https://doi.org/10.1093/oxfordjournals.aje.a009107

    Article  Google Scholar 

  5. Pegoraro, C., MacNeil, S., Battaglia, G.: Transdermal drug delivery: from micro to nano. Nanoscale. 4(6), 1881 (2012). https://doi.org/10.1039/c2nr11606e

    Article  Google Scholar 

  6. Mitragotri, S.: Immunization without needles. Nat. Rev. Immunol. 5(12), 905–916 (2005). https://doi.org/10.1038/nri1728

    Article  Google Scholar 

  7. Giudice, E., Campbell, J.: Needle-free vaccine delivery☆. Adv. Drug. Deliver. Rev. 58(1), 68–89 (2006). https://doi.org/10.1016/j.addr.2005.12.003

    Article  Google Scholar 

  8. Prausnitz, M.R., Langer, R.: Transdermal drug delivery. Nat. Biotechnol. 26(11), 1261–1268 (2008). https://doi.org/10.1038/nbt.1504

    Article  Google Scholar 

  9. Kupper, T.S., Fuhlbrigge, R.C.: Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 4(3), 211–222 (2004). https://doi.org/10.1038/nri1310

    Article  Google Scholar 

  10. Labouta, H.I., El-Khordagui, L.K., Kraus, T., Schneider, M.: Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 3(12), 4989 (2011). https://doi.org/10.1039/c1nr11109d

    Article  Google Scholar 

  11. Williams, A.C., Barry, B.W.: Penetration enhancers. Adv. Drug. Deliver. Rev. 56(5), 603–618 (2004). https://doi.org/10.1016/j.addr.2003.10.025

    Article  Google Scholar 

  12. Karande, P., Jain, A., Ergun, K., Kispersky, V., Mitragotri, S.: Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. 102(13), 4688–4693 (2005). https://doi.org/10.1073/pnas.0501176102

    Article  Google Scholar 

  13. Chen, Y., Shen, Y., Guo, X., Zhang, C., Yang, W., Ma, M., Liu, S., Zhang, M., Wen, L.-P.: Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotechnol. 24(4), 455–460 (2006). https://doi.org/10.1038/nbt1193

    Article  Google Scholar 

  14. Hsu, T., Mitragotri, S.: Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. 108(38), 15816–15821 (2011). https://doi.org/10.1073/pnas.1016152108

    Article  Google Scholar 

  15. Chen, M., Gupta, V., Anselmo, A.C., Muraski, J.A., Mitragotri, S.: Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. J. Control. Release. 173, 67–74 (2014). https://doi.org/10.1016/j.jconrel.2013.10.007

    Article  Google Scholar 

  16. Pino, C.J., Gutterman, J.U., Vonwil, D., Mitragotri, S., Shastri, V.P.: Glycosylation facilitates transdermal transport of macromolecules. Proc. Natl. Acad. Sci. 109(52), 21283–21288 (2012). https://doi.org/10.1073/pnas.1200942109

    Article  Google Scholar 

  17. Karande, P., Jain, A., Mitragotri, S.: Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22(2), 192–197 (2004). https://doi.org/10.1038/nbt928

    Article  Google Scholar 

  18. Venuganti, V.V.K., Saraswathy, M., Dwivedi, C., Kaushik, R.S., Perumal, O.P.: Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale. 7(9), 3903–3914 (2015). https://doi.org/10.1039/c4nr05241b

    Article  Google Scholar 

  19. Denet, A.-R., Vanbever, R., Préat, V.: Skin electroporation for transdermal and topical delivery. Adv. Drug. Deliver. Rev. 56(5), 659–674 (2004). https://doi.org/10.1016/j.addr.2003.10.027

    Article  Google Scholar 

  20. Rastogi, R., Anand, S., Koul, V.: Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin. Drug Dev. Ind. Pharm. 36(11), 1303–1311 (2010). https://doi.org/10.3109/03639041003786193

    Article  Google Scholar 

  21. Tomoda, K., Watanabe, A., Suzuki, K., Inagi, T., Terada, H., Makino, K.: Enhanced transdermal permeability of estradiol using combination of PLGA nanoparticles system and iontophoresis. Colloids Surf. B: Biointerfaces. 97, 84–89 (2012). https://doi.org/10.1016/j.colsurfb.2012.04.002

    Article  Google Scholar 

  22. Byrne, J.D., MNR, J., O'Neill, A.T., Bickford, L.R., Keeler, A.W., Hyder, N., Wagner, K., Deal, A., Little, R.E., Moffitt, R.A., Stack, C., Nelson, M., Brooks, C.R., Lee, W., Luft, J.C., Napier, M.E., Darr, D., Anders, C.K., Stack, R., Tepper, J.E., Wang, A.Z., Zamboni, W.C., Yeh, J.J., JM, D.S.: Local iontophoretic administration of cytotoxic therapies to solid tumors. Sci. Transl. Med. 7(273), 273ra214-273ra214 (2015). https://doi.org/10.1126/scitranslmed.3009951

    Article  Google Scholar 

  23. Calvet, C.Y., Famin, D., André, F.M., Mir, L.M.: Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology. 3(4), e28131 (2014). https://doi.org/10.4161/onci.28131

    Article  Google Scholar 

  24. Shin, J., Shin, K., Lee, H., Nam, J.-B., Jung, J.-E., Ryu, J.-H., Han, J.-H., Suh, K.-D., Kim, Y.-J., Shim, J., Kim, J., Han, S.-H., Char, K., Kim, Y.K., Chung, J.H., Lee, M.J., Kang, B.C., Kim, J.-W.: Non-invasive transdermal delivery route using electrostatically interactive biocompatible nanocapsules. Adv. Mater. 22(6), 739–743 (2010). https://doi.org/10.1002/adma.200902079

    Article  Google Scholar 

  25. Prausnitz, M.R.: The effects of electric current applied to skin: a review for transdermal drug delivery. Adv. Drug. Deliver. Rev. 18(3), 395–425 (1996). https://doi.org/10.1016/0169-409x(95)00081-h

    Article  Google Scholar 

  26. Gupta, J., Prausnitz, M.R.: Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med. Biol. 35(8), 1405–1408 (2009). https://doi.org/10.1016/j.ultrasmedbio.2009.04.001

    Article  Google Scholar 

  27. Mitragotri, S., Blankschtein, D., Langer, R.: Ultrasound-mediated transdermal protein delivery. Science. 269(5225), 850–853 (1995). https://doi.org/10.1126/science.7638603

    Article  Google Scholar 

  28. Mitragotri, S., Kost, J.: Low-frequency sonophoresis. Adv. Drug. Deliver. Rev. 56(5), 589–601 (2004). https://doi.org/10.1016/j.addr.2003.10.024

    Article  Google Scholar 

  29. Naik, A., Kalia, Y.N., Guy, R.H.: Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technolo. Today. 3(9), 318–326 (2000). https://doi.org/10.1016/s1461-5347(00)00295-9

    Article  Google Scholar 

  30. Paithankar, D., Hwang, B.H., Munavalli, G., Kauvar, A., Lloyd, J., Blomgren, R., Faupel, L., Meyer, T., Mitragotri, S.: Ultrasonic delivery of silica–gold nanoshells for photothermolysis of sebaceous glands in humans: nanotechnology from the bench to clinic. J. Control. Release. 206, 30–36 (2015). https://doi.org/10.1016/j.jconrel.2015.03.004

    Article  Google Scholar 

  31. Lopez, R.F.V., Seto, J.E., Blankschtein, D., Langer, R.: Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials. 32(3), 933–941 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.060

    Article  Google Scholar 

  32. McAllister, D.V., Wang, P.M., Davis, S.P., Park, J.H., Canatella, P.J., Allen, M.G., Prausnitz, M.R.: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. 100(24), 13755–13760 (2003). https://doi.org/10.1073/pnas.2331316100

    Article  Google Scholar 

  33. Prausnitz, M.R.: Microneedles for transdermal drug delivery. Adv. Drug. Deliver. Rev. 56(5), 581–587 (2004). https://doi.org/10.1016/j.addr.2003.10.023

    Article  Google Scholar 

  34. Mikszta, J.A., Alarcon, J.B., Brittingham, J.M., Sutter, D.E., Pettis, R.J., Harvey, N.G.: Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8(4), 415–419 (2002). https://doi.org/10.1038/nm0402-415

    Article  Google Scholar 

  35. Lee, H., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Kim, D.-H.: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016). https://doi.org/10.1038/nnano.2016.38

    Article  Google Scholar 

  36. Wermeling, D.P., Banks, S.L., Hudson, D.A., Gill, H.S., Gupta, J., Prausnitz, M.R., Stinchcomb, A.L.: Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc. Natl. Acad. Sci. 105(6), 2058–2063 (2008). https://doi.org/10.1073/pnas.0710355105

    Article  Google Scholar 

  37. DeMuth, P.C., Li, A.V., Abbink, P., Liu, J., Li, H., Stanley, K.A., Smith, K.M., Lavine, C.L., Seaman, M.S., Kramer, J.A., Miller, A.D., Abraham, W., Suh, H., Elkhader, J., Hammond, P.T., Barouch, D.H., Irvine, D.J.: Vaccine delivery with microneedle skin patches in nonhuman primates. Nat. Biotechnol. 31(12), 1082–1085 (2013). https://doi.org/10.1038/nbt.2759

    Article  Google Scholar 

  38. Su, X., Kim, B.-S., Kim, S.R., Hammond, P.T., Irvine, D.J.: Layer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery. ACS Nano. 3(11), 3719–3729 (2009). https://doi.org/10.1021/nn900928u

    Article  Google Scholar 

  39. DeMuth, P.C., Su, X., Samuel, R.E., Hammond, P.T., Irvine, D.J.: Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv. Mater. 22(43), 4851–4856 (2010). https://doi.org/10.1002/adma.201001525

    Article  Google Scholar 

  40. Zaric, M., Lyubomska, O., Touzelet, O., Poux, C., Al-Zahrani, S., Fay, F., Wallace, L., Terhorst, D., Malissen, B., Henri, S., Power, U.F., Scott, C.J., Donnelly, R.F., Kissenpfennig, A.: Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 7(3), 2042–2055 (2013). https://doi.org/10.1021/nn304235j

    Article  Google Scholar 

  41. Di, J., Yao, S., Ye, Y., Cui, Z., Yu, J., Ghosh, T.K., Zhu, Y., Gu, Z.: Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano. 9(9), 9407–9415 (2015). https://doi.org/10.1021/acsnano.5b03975

    Article  Google Scholar 

  42. Chen, M.C., Lin, Z.W., Ling, M.H.: Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and Photothermal therapy. ACS Nano. 10(1), 93–101 (2016). https://doi.org/10.1021/acsnano.5b05043

    Article  Google Scholar 

  43. Wang, C., Ye, Y., Hochu, G.M., Sadeghifar, H., Gu, Z.: Enhanced Cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16(4), 2334–2340 (2016). https://doi.org/10.1021/acs.nanolett.5b05030

    Article  Google Scholar 

  44. Ye, Y., Wang, J., Hu, Q., Hochu, G.M., Xin, H., Wang, C., Gu, Z.: Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano. 10(9), 8956–8963 (2016). https://doi.org/10.1021/acsnano.6b04989

    Article  Google Scholar 

  45. Walsh, L., Ryu, J., Bock, S., Koval, M., Mauro, T., Ross, R., Desai, T.: Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. Nano Lett. 15(4), 2434–2441 (2015). https://doi.org/10.1021/nl504829f

    Article  Google Scholar 

  46. Chen, H., Diebold, G.: Chemical generation of acoustic waves: a Giant photoacoustic effect. Science. 270(5238), 963–966 (1995). https://doi.org/10.1126/science.270.5238.963

    Article  Google Scholar 

  47. Duncan, D.D., Esenaliev, R.O., Hollinger, J.O., Larina, I.V., Larin, K.V., Jacques, S.L., Motamedi, M., Evers, B.M.: Mechanism of laser-induced drug delivery in tumors. International Society for Optics and Photonics. 3914, 188 (2000). https://doi.org/10.1117/12.388045

  48. Kodama, T., Doukas, A.G., Hamblin, M.R.: Shock wave-mediated molecular delivery into cells. Biochim. Biophys. Acta. 1542(1–3), 186–194 (2002). https://doi.org/10.1016/s0167-4889(01)00177-x

    Article  Google Scholar 

  49. Tirlapur, U.K., König, K.: Cell biology: targeted transfection by femtosecond laser. Nature. 418(6895), 290–291 (2002). https://doi.org/10.1038/418290a

    Article  Google Scholar 

  50. Chakravarty, P., Qian, W., El-Sayed, M.A., Prausnitz, M.R.: Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 5(8), 607–611 (2010). https://doi.org/10.1038/nnano.2010.126

    Article  Google Scholar 

  51. Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., West, J.L.: Near-infrared resonant Nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7(7), 1929–1934 (2007). https://doi.org/10.1021/nl070610y

    Article  Google Scholar 

  52. Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006). https://doi.org/10.1021/ja057254a

    Article  Google Scholar 

  53. Morton, J.G., Day, E.S., Halas, N.J., West, J.L.: Nanoshells for Photothermal Cancer Therapy. Methods Mol. Biol. 624, 101–117 (2010). https://doi.org/10.1007/978-1-60761-609-2_7

    Article  Google Scholar 

  54. Sá, G.F.F., Serpa, C., Arnaut, L.G.: Stratum corneum permeabilization with photoacoustic waves generated by piezophotonic materials. J. Control. Release. 167(3), 290–300 (2013). https://doi.org/10.1016/j.jconrel.2013.02.005

    Article  Google Scholar 

  55. Jung, H.S., Kong, W.H., Sung, D.K., Lee, M.Y., Beack, S.E., Keum, D.H., Kim, K.S., Yun, S.H., Hahn, S.K.: Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin Cancer. ACS Nano. 8(1), 260–268 (2014). https://doi.org/10.1021/nn405383a

    Article  Google Scholar 

  56. Hamidi, M., Azadi, A., Rafiei, P.: Hydrogel nanoparticles in drug delivery. Adv. Drug. Deliver Rev. 60(15), 1638–1649 (2008). https://doi.org/10.1016/j.addr.2008.08.002

    Article  Google Scholar 

  57. Lu, Y., Sun, W., Gu, Z.: Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Release. 194, 1–19 (2014). https://doi.org/10.1016/j.jconrel.2014.08.015

    Article  Google Scholar 

  58. Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). https://doi.org/10.1038/nmat3776

    Article  Google Scholar 

  59. Küchler, S., Radowski, M.R., Blaschke, T., Dathe, M., Plendl, J., Haag, R., Schäfer-Korting, M., Kramer, K.D.: Nanoparticles for skin penetration enhancement – a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 71(2), 243–250 (2009). https://doi.org/10.1016/j.ejpb.2008.08.019

    Article  Google Scholar 

  60. Shi, C., Guo, D., Xiao, K., Wang, X., Wang, L., Luo, J.: A drug-specific nanocarrier design for efficient anticancer therapy. Nat. Commun. 6, 7449 (2015). https://doi.org/10.1038/ncomms8449

    Article  Google Scholar 

  61. Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53(46), 12320–12364 (2014). https://doi.org/10.1002/anie.201403036

    Article  Google Scholar 

  62. Torchilin, V.P.: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13(11), 813–827 (2014). https://doi.org/10.1038/nrd4333

    Article  Google Scholar 

  63. Wang, S., Huang, P., Chen, X.: Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano. 10(3), 2991–2994 (2016). https://doi.org/10.1021/acsnano.6b00870

    Article  Google Scholar 

  64. Lin, Y.L., Chen, C.H., Wu, H.Y., Tsai, N.M., Jian, T.Y., Chang, Y.C., Lin, C.H., Wu, C.H., Hsu, F.T., Leung, T.K., Liao, K.W.: Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J. Nanobiotechnol. 14, (2016). https://doi.org/10.1186/s12951-016-0163-3

  65. Holme, M.N., Fedotenko, I.A., Abegg, D., Althaus, J., Babel, L., Favarger, F., Reiter, R., Tanasescu, R., Zaffalon, P.-L., Ziegler, A., Müller, B., Saxer, T., Zumbuehl, A.: Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 7(8), 536–543 (2012). https://doi.org/10.1038/nnano.2012.84

    Article  Google Scholar 

  66. Yatvin, M., Weinstein, J., Dennis, W., Blumenthal, R.: Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 202(4374), 1290–1293 (1978). https://doi.org/10.1126/science.364652

    Article  Google Scholar 

  67. Pierre, M.B.R., Tedesco, A.C., Marchetti, J.M., Bentley, M.V.L.B.: Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol. 1(1), (2001). https://doi.org/10.1186/1471-5945-1-5

  68. Zheng, D., Giljohann, D.A., Chen, D.L., Massich, M.D., Wang, X.-Q., Iordanov, H., Mirkin, C.A., Paller, A.S.: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. 109(30), 11975–11980 (2012). https://doi.org/10.1073/pnas.1118425109

    Article  Google Scholar 

  69. Kong, M., Hou, L., Wang, J., Feng, C., Liu, Y., Cheng, X., Chen, X.: Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun. 51(8), 1453–1456 (2015). https://doi.org/10.1039/c4cc08746a

    Article  Google Scholar 

  70. Prow, T.W., Grice, J.E., Lin, L.L., Faye, R., Butler, M., Becker, W., Wurm, E.M.T., Yoong, C., Robertson, T.A., Soyer, H.P., Roberts, M.S.: Nanoparticles and microparticles for skin drug delivery. Adv. Drug. Deliver. Rev. 63(6), 470–491 (2011). https://doi.org/10.1016/j.addr.2011.01.012

    Article  Google Scholar 

  71. Mangalathillam, S., Rejinold, N.S., Nair, A., Lakshmanan, V.K., Nair, S.V., Jayakumar, R.: Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale. 4(1), 239–250 (2012). https://doi.org/10.1039/c1nr11271f

    Article  Google Scholar 

  72. Toyoda, M., Hama, S., Ikeda, Y., Nagasaki, Y., Kogure, K.: Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int. J. Pharm. 483(1–2), 110–114 (2015). https://doi.org/10.1016/j.ijpharm.2015.02.024

    Article  Google Scholar 

  73. Abdel-Mottaleb, M.M.A., Neumann, D., Lamprecht, A.: Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm. 79(1), 36–42 (2011). https://doi.org/10.1016/j.ejpb.2011.04.009

    Article  Google Scholar 

  74. Zaric, M., Lyubomska, O., Poux, C., Hanna, M.L., McCrudden, M.T., Malissen, B., Ingram, R.J., Power, U.F., Scott, C.J., Donnelly, R.F., Kissenpfennig, A.: Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine Langerhans cells. J. Invest. Dermatol. 135(2), 425–434 (2015). https://doi.org/10.1038/jid.2014.415

    Article  Google Scholar 

  75. Özbaş-Turan, S., Akbuğa, J.: Plasmid DNA-loaded chitosan/TPP nanoparticles for topical gene delivery. Drug Deliv. 18(3), 215–222 (2011). https://doi.org/10.3109/10717544.2010.544688

    Article  Google Scholar 

  76. Kim, H.J., Takemoto, H., Yi, Y., Zheng, M., Maeda, Y., Chaya, H., Hayashi, K., Mi, P., Pittella, F., Christie, R.J., Toh, K., Matsumoto, Y., Nishiyama, N., Miyata, K., Kataoka, K.: Precise engineering of siRNA delivery vehicles to tumors using Polyion complexes and gold nanoparticles. ACS Nano. 8(9), 8979–8991 (2014). https://doi.org/10.1021/nn502125h

    Article  Google Scholar 

  77. Lee, H., Lee, J.H., Kim, J., Mun, J.H., Chung, J., Koo, H., Kim, C., Yun, S.H., Hahn, S.K.: Hyaluronate–gold Nanorod/DR5 antibody complex for noninvasive Theranosis of skin Cancer. ACS Appl. Mater. Interfaces. 8(47), 32202–32210 (2016). https://doi.org/10.1021/acsami.6b11319

    Article  Google Scholar 

  78. Labala, S., Mandapalli, P.K., Kurumaddali, A., Venuganti, V.V.K.: Layer-by-layer polymer coated gold nanoparticles for topical delivery of Imatinib Mesylate to treat melanoma. Mol. Pharm. 12(3), 878–888 (2015). https://doi.org/10.1021/mp5007163

    Article  Google Scholar 

  79. Wu, J., Paudel, K.S., Strasinger, C., Hammell, D., Stinchcomb, A.L., Hinds, B.J.: Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc. Natl. Acad. Sci. 107(26), 11698–11702 (2010). https://doi.org/10.1073/pnas.1004714107

    Article  Google Scholar 

  80. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969–976 (2004). https://doi.org/10.1038/nbt994

    Article  Google Scholar 

  81. Cevc, G.: Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug. Deliver. Rev. 56(5), 675–711 (2004). https://doi.org/10.1016/j.addr.2003.10.028

    Article  Google Scholar 

  82. Jiang, T., Mo, R., Bellotti, A., Zhou, J., Gu, Z.: Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 24(16), 2295–2304 (2014). https://doi.org/10.1002/adfm.201303222

    Article  Google Scholar 

  83. Linderoth, L., Peters, G.H., Madsen, R., Andresen, T.L.: Drug delivery by an enzyme-mediated cyclization of a lipid prodrug with unique bilayer-formation properties. Angew. Chem. Int. Ed. 48(10), 1823–1826 (2009). https://doi.org/10.1002/anie.200805241

    Article  Google Scholar 

  84. Mo, R., Jiang, T., Gu, Z.: Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. 126(23), 5925–5930 (2014). https://doi.org/10.1002/ange.201400268

    Article  Google Scholar 

  85. Sahay, G., Querbes, W., Alabi, C., Eltoukhy, A., Sarkar, S., Zurenko, C., Karagiannis, E., Love, K., Chen, D., Zoncu, R., Buganim, Y., Schroeder, A., Langer, R., Anderson, D.G.: Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31(7), 653–658 (2013). https://doi.org/10.1038/nbt.2614

    Article  Google Scholar 

  86. Khan, A., Shukla, Y., Kalra, N., Alam, M., Ahmad, M.G., Hakim, S.R., Owais, M.: Potential of diallyl sulfide bearing pH-sensitive liposomes in chemoprevention against DMBA-induced skin papilloma. Mol. Med. 13(7–8), 443–451 (2007). https://doi.org/10.2119/2006-00111.Khan

    Article  Google Scholar 

  87. Bharadwaj, R., Das, P.J., Pal, P., Mazumder, B.: Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev. Ind. Pharm. 42(9), 1482–1494 (2016). https://doi.org/10.3109/03639045.2016.1151028

    Article  Google Scholar 

  88. Bonatto, C.C., Joanitti, G.A., Silva, L.P.: In vitro cytotoxic activity of chitosan–bullfrog oil microemulsion against melanoma cells. IET Nanobiotechnol. 9(4), 172–177 (2015). https://doi.org/10.1049/iet-nbt.2014.0010

    Article  Google Scholar 

  89. Bhatia, A., Singh, B., Raza, K., Shukla, A., Amarji, B., Katare, O.P.: Tamoxifen-loaded novel liposomal formulations: evaluation of anticancer activity on DMBA-TPA induced mouse skin carcinogenesis. J. Drug Target. 20(6), 544–550 (2012). https://doi.org/10.3109/1061186x.2012.694887

    Article  Google Scholar 

  90. LeDuc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2(1), 3–7 (2007). https://doi.org/10.1038/nnano.2006.180

    Article  Google Scholar 

  91. Lu, Y., Aimetti, A.A., Langer, R., Gu, Z.: Bioresponsive materials. Nat. Rev. Mater. 2(1), 16075 (2016). https://doi.org/10.1038/natrevmats.2016.75

    Article  Google Scholar 

  92. Sun, W., Hu, Q., Ji, W., Wright, G., Gu, Z.: Leveraging physiology for precision drug delivery. Physiol. Rev. 97(1), 189–225 (2016). https://doi.org/10.1152/physrev.00015.2016

    Article  Google Scholar 

  93. Gu, Z., Yan, M., Hu, B., Joo, K.-I., Biswas, A., Huang, Y., Lu, Y., Wang, P., Tang, Y.: Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 9(12), 4533–4538 (2009). https://doi.org/10.1021/nl902935b

    Article  Google Scholar 

  94. Kang, J.-H., Asai, D., Kim, J.-H., Mori, T., Toita, R., Tomiyama, T., Asami, Y., Oishi, J., Sato, Y.T., Niidome, T., Jun, B., Nakashima, H., Katayama, Y.: Design of Polymeric carriers for cancer-specific gene targeting: utilization of abnormal protein kinase Cα activation in Cancer cells. J. Am. Chem. Soc. 130(45), 14906–14907 (2008). https://doi.org/10.1021/ja805364s

    Article  Google Scholar 

  95. Kost, J., Langer, R.: Responsive polymeric delivery systems. Adv. Drug. Deliver. Rev. 46(1–3), 125–148 (2001). https://doi.org/10.1016/s0169-409x(00)00136-8

    Article  Google Scholar 

  96. Napoli, A., Valentini, M., Tirelli, N., Müller, M., Hubbell, J.A.: Oxidation-responsive polymeric vesicles. Nat. Mater. 3(3), 183–189 (2004). https://doi.org/10.1038/nmat1081

    Article  Google Scholar 

  97. Tong, R., Tang, L., Ma, L., Tu, C., Baumgartner, R., Cheng, J.: Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 43(20), 6982–7012 (2014). https://doi.org/10.1039/c4cs00133h

    Article  Google Scholar 

  98. Choi, W.I., Lee, J.H., Kim, J.-Y., Kim, J.-C., Kim, Y.H., Tae, G.: Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J. Control. Release. 157(2), 272–278 (2012). https://doi.org/10.1016/j.jconrel.2011.08.013

    Article  Google Scholar 

  99. Zhao, Q.-H., Zhang, Y., Liu, Y., Wang, H.-L., Shen, Y.-Y., Yang, W.-J., Wen, L.-P.: Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med. Oncol. 27(2), 203–212 (2009). https://doi.org/10.1007/s12032-009-9192-1

    Article  Google Scholar 

  100. Kim, Y., Macfarlane, R.J., Jones, M.R., Mirkin, C.A.: Transmutable nanoparticles with reconfigurable surface ligands. Science. 351(6273), 579–582 (2016). https://doi.org/10.1126/science.aad2212

    Article  Google Scholar 

  101. Lu, Y., Hu, Q., Lin, Y., Pacardo, D.B., Wang, C., Sun, W., Ligler, F.S., Dickey, M.D., Gu, Z.: Transformable liquid-metal nanomedicine. Nat. Commun. 6, 10066 (2015). https://doi.org/10.1038/ncomms10066

    Article  Google Scholar 

  102. Rim, H.P., Min, K.H., Lee, H.J., Jeong, S.Y., Lee, S.C.: pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew. Chem. Int. Ed. 50(38), 8853–8857 (2011). https://doi.org/10.1002/anie.201101536

    Article  Google Scholar 

  103. Wang, C., Flynn, N.T., Langer, R.: Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater. 16(13), 1074–1079 (2004). https://doi.org/10.1002/adma.200306516

    Article  Google Scholar 

  104. Huang, H.-C., Barua, S., Sharma, G., Dey, S.K., Rege, K.: Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release. 155(3), 344–357 (2011). https://doi.org/10.1016/j.jconrel.2011.06.004

    Article  Google Scholar 

  105. Langille, M.R., Personick, M.L., Zhang, J., Mirkin, C.A.: Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 134(35), 14542–14554 (2012). https://doi.org/10.1021/ja305245g

    Article  Google Scholar 

  106. Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., Zink, J.I.: Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2(5), 889–896 (2008). https://doi.org/10.1021/nn800072t

    Article  Google Scholar 

  107. Mi, P., Kokuryo, D., Cabral, H., Wu, H., Terada, Y., Saga, T., Aoki, I., Nishiyama, N., Kataoka, K.: A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 11(8), 724–730 (2016). https://doi.org/10.1038/nnano.2016.72

    Article  Google Scholar 

  108. Bozich, J.S., Lohse, S.E., Torelli, M.D., Murphy, C.J., Hamers, R.J., Klaper, R.D.: Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ. Sci. Nano. 1(3), 260–270 (2014). https://doi.org/10.1039/c4en00006d

    Article  Google Scholar 

  109. Chen, J., Saeki, F., Wiley, B.J., Cang, H., Cobb, M.J., Li, Z.-Y., Au, L., Zhang, H., Kimmey, M.B., Li, X.Y.: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5(3), 473–477 (2005). https://doi.org/10.1021/nl047950t

    Article  Google Scholar 

  110. Oh, N., Park, J.-H.: Surface chemistry of gold nanoparticles mediates their exocytosis in macrophages. ACS Nano. 8(6), 6232–6241 (2014). https://doi.org/10.1021/nn501668a

    Article  Google Scholar 

  111. Zhang, P., Chen, L., Xu, T., Liu, H., Liu, X., Meng, J., Yang, G., Jiang, L., Wang, S.: Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of Cancer cells. Adv. Mater. 25(26), 3566–3570 (2013). https://doi.org/10.1002/adma.201300888

    Article  Google Scholar 

  112. Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J.E., Song, C., Kim, S.J., Lee, D.J., Jun, S.W., Yang, S., Park, M., Shin, J., Do, K., Lee, M., Kang, K., Hwang, C.S., Lu, N., Hyeon, T., Kim, D.-H.: Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014). https://doi.org/10.1038/nnano.2014.38

    Article  Google Scholar 

  113. Service, R.: Spherical RNA therapy shows promise against psoriasis in first human trial. Science. (2016). https://doi.org/10.1126/science.aah7240

  114. Randeria, P.S., Seeger, M.A., Wang, X.-Q., Wilson, H., Shipp, D., Mirkin, C.A., Paller, A.S.: siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc. Natl. Acad. Sci. 112(18), 5573–5578 (2015). https://doi.org/10.1073/pnas.1505951112

    Article  Google Scholar 

  115. Mitragotri, S., Burke, P.A., Langer, R.: Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13(9), 655–672 (2014). https://doi.org/10.1038/nrd4363

    Article  Google Scholar 

  116. Yu, J., Zhang, Y., Bomba, H., Gu, Z.: Stimuli-responsive delivery of therapeutics for diabetes treatment. Bioeng. Transl. Med. 1(3), 323–337 (2016). https://doi.org/10.1002/btm2.10036

    Article  Google Scholar 

  117. Ye, Y., Wang, C., Zhang, X., Hu, Q., Zhang, Y., Liu, Q., Wen, D., Milligan, J., Bellotti, A., Huang, L., Dotti, G., Gu, Z.: A melanin-mediated cancer immunotherapy patch. Sci. Immun. 2(17), eaan5692 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ye, Y., Wang, J., Sun, W., Bomba, H.N., Gu, Z. (2019). Topical and Transdermal Nanomedicines for Cancer Therapy. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics