Skip to main content

Finding Probabilistic Rule Lists using the Minimum Description Length Principle

  • Conference paper
  • First Online:
Discovery Science (DS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11198))

Included in the following conference series:

Abstract

An important task in data mining is that of rule discovery in supervised data. Well-known examples include rule-based classification and subgroup discovery. Motivated by the need to succinctly describe an entire labeled dataset, rather than accurately classify the label, we propose an MDL-based supervised rule discovery task. The task concerns the discovery of a small rule list where each rule captures the probability of the Boolean target attribute being true. Our approach is built on a novel combination of two main building blocks: (i) the use of the Minimum Description Length (MDL) principle to characterize good-and-small sets of probabilistic rules, (ii) the use of branch-and-bound with a best-first search strategy to find better-than-greedy and optimal solutions for the proposed task. We experimentally show the effectiveness of our approach, by providing a comparison with other supervised rule learning algorithms on real-life datasets.

J.O.R. Aoga—This author is supported by the FRIA-FNRS (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture, Belgium).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All logarithms are to base 2 and by convention, we use \(0\log 0 = 0\).

  2. 2.

    Note that by convention the size of the default rule is \(m_2=0\).

  3. 3.

    https://dtai.cs.kuleuven.be/CP4IM/datasets/.

  4. 4.

    http://archive.ics.uci.edu/ml/datasets.html.

  5. 5.

    https://projetsJOHN@bitbucket.org/projetsJOHN/mdlrulesets.

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. Int. Conf. Manag. Data (SIGMOD) 22(2), 207–216 (1993)

    Google Scholar 

  2. Esipova, N., Ray, J., Pugliese, A.: Number of potential migrants worldwide tops 700 million. Gallup, USA (2018)

    Google Scholar 

  3. Fano, R.M.: The transmission of information. Massachusetts Institute of Technology, Research Laboratory of Electronics Cambridge, Cambridge (1949)

    Google Scholar 

  4. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer Publishing Company, Incorporated (2014)

    Google Scholar 

  5. Grünwald, P.D.: The minimum description length principle. MIT press, Cambridge (2007)

    Google Scholar 

  6. Guns, T., Nijssen, S., De Raedt, L.: k-Pattern set mining under constraints. IEEE Trans. Knowl. Data Eng. 25(2), 402–418 (2013)

    Article  Google Scholar 

  7. Lavrac, N., Kavsek, B., Flach, P.A., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5, 153–188 (2004)

    MathSciNet  Google Scholar 

  8. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)

    Article  Google Scholar 

  9. Szathmary, L., Napoli, A., Kuznetsov, S.O.: ZART: a multifunctional itemset mining algorithm. In: Eklund, P.W., Diatta, J., Liquiere, M. (eds.) Proceedings of the 5th International Conference on Concept Lattices and Their Applications, CLA 2007. vol. 331 (2007)

    Google Scholar 

  10. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1), 169–214 (2011)

    Article  MathSciNet  Google Scholar 

  11. Yang, H., Rudin, C., Seltzer, M.: Scalable bayesian rule lists. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML’17. Proceedings of Machine Learning Research, vol. 70, pp. 3921–3930. PMLR (2017)

    Google Scholar 

  12. Zimmermann, A., Nijssen, S.: Supervised pattern mining and applications to classification. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 425–442. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2_17

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John O. R. Aoga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aoga, J.O.R., Guns, T., Nijssen, S., Schaus, P. (2018). Finding Probabilistic Rule Lists using the Minimum Description Length Principle. In: Soldatova, L., Vanschoren, J., Papadopoulos, G., Ceci, M. (eds) Discovery Science. DS 2018. Lecture Notes in Computer Science(), vol 11198. Springer, Cham. https://doi.org/10.1007/978-3-030-01771-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01771-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01770-5

  • Online ISBN: 978-3-030-01771-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics