Advertisement

Less is More: Univariate Modelling to Detect Early Parkinson’s Disease from Keystroke Dynamics

  • Antony MilneEmail author
  • Katayoun Farrahi
  • Mihalis A. Nicolaou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11198)

Abstract

We analyse keystroke hold times from typing logs to detect early signs of Parkinson’s disease. We develop a feature that captures the dynamic variation between consecutive keystrokes and demonstrate that it can be be used in a univariate model to perform classification with \(\text {AUC}=0.85\) from only a few hundred keystrokes. This is a substantial improvement on the current baseline. We argue that previously proposed methods are based on overcomplicated models—our simpler method is not only more elegant and transparent but also more effective.

References

  1. 1.
    Elbaz, A., Carcaillon, L., Kab, S., Moisan, F.: Epidemiology of Parkinson’s disease. Rev. Neurol. 172(1), 14–26 (2016)CrossRefGoogle Scholar
  2. 2.
    Martínez-Martín, P., Gil-Nagel, A., Gracia, L., Gómez, J., Martínez-Sarriés, J., Bermejo, F.: Unified Parkinson’s disease rating scale characteristics and structure. Mov. Disord. 9(1), 76–83 (1994)CrossRefGoogle Scholar
  3. 3.
    Pagan, F.L.: Improving outcomes through early diagnosis of Parkinson’s disease. Am. J. Manag. Care 18(7 Suppl), S176–82 (2012)Google Scholar
  4. 4.
    Giancardo, L., Sánchez-Ferro, A., Arroyo-Gallego, T., Butterworth, I., Mendoza, C.S., Montero, P., Matarazzo, M., Obeso, J.A., Gray, M.L., Estépar, R.: Computer keyboard interaction as an indicator of early Parkinson’s disease. Sci. Rep. 6, 34468 (2016)CrossRefGoogle Scholar
  5. 5.
    Adams, W.R.: High-accuracy detection of early Parkinson’s Disease using multiple characteristics of finger movement while typing. PLoS One 12(11), e0188226 (2017)CrossRefGoogle Scholar
  6. 6.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Arroyo-Gallego, T., Ledesma-Carbayo, M., Sánchez-Ferro, A., Butterworth, I., Sanchez-Mendoza, C., Matarazzo, M., Montero- Escribano, P., Lopez-Blanco, R., Puertas-Martín, V., Trincado, R., Giancardo, L.: Detection of motor impairment in Parkinson’s disease via mobile touchscreen typing. IEEE Trans. Biomed. Eng. 64(9), 1994–2002 (2017)CrossRefGoogle Scholar
  8. 8.
    Youden, W.J.: Index for rating diagnostic tests. Cancer 3(1), 32–35 (1950)CrossRefGoogle Scholar
  9. 9.
    Christ, M., Kempa-Liehr, A. W., Feindt, M.: Distributed and parallel time series feature extraction for industrial big data applications. arXiv:1610.07717 (2016)
  10. 10.
    tsfresh, https://github.com/blue-yonder/tsfresh. Accessed 12 Feb 2018
  11. 11.
    Kaggle: raw data used to predict the onset of Parkinson’s from typing tendencies, https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients. Accessed 1 Aug 2018

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antony Milne
    • 1
    Email author
  • Katayoun Farrahi
    • 2
  • Mihalis A. Nicolaou
    • 1
    • 3
  1. 1.Department of ComputingGoldsmiths, University of LondonLondonUK
  2. 2.Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK
  3. 3.The Cyprus InstituteNicosiaCyprus

Personalised recommendations