Advertisement

Exceptional Attributed Subgraph Mining to Understand the Olfactory Percept

  • Maëlle Moranges
  • Marc PlantevitEmail author
  • Arnaud Fournel
  • Moustafa Bensafi
  • Céline Robardet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11198)

Abstract

Human olfactory perception is a complex phenomenon whose neural mechanisms are still largely unknown and novel methods are needed to better understand it. Methodological issues that prevent such understanding are: (1) to be comparable, individual cerebral images have to be transformed in order to fit a template brain, leading to a spatial imprecision that has to be taken into account in the analysis; (2) we have to deal with inter-individual variability of the hemodynamic signal from fMRI images which render comparisons of individual raw data difficult. The aim of the present paper was to overcome these issues. To this end, we developed a methodology based on discovering exceptional attributed subgraphs which enabled extracting invariants from fMRI data of a sample of individuals breathing different odorant molecules.Four attributed graph models were proposed that differ in how they report the hemodynamic activity measured in each voxel by associating varied attributes to the vertices of the graph. An extensive empirical study is presented that compares the ability of each modeling to uncover some brain areas that are of interest for the neuroscientists.

References

  1. 1.
    Atzmüller, M., Puppe, F.: SD-map - a fast algorithm for exhaustive subgroup discovery. In: ECMLPKDD, pp. 6–17 (2006)Google Scholar
  2. 2.
    Baba, T., et al.: Severe olfactory dysfunction is a prodromal symptom of dementia associated with Parkinson’s disease: a 3 year longitudinal study. Brain 135(1), 161–169 (2012)CrossRefGoogle Scholar
  3. 3.
    Bay, S.D., Pazzani, M.J.: Detecting group differences: mining contrast sets. Data Min. Knowl. Discov. 5(3), 213–246 (2001)CrossRefGoogle Scholar
  4. 4.
    Bendimerad, A.A., Plantevit, M., Robardet, C.: Mining exceptional closed patterns in attributed graphs. Knowl. Inf. Syst. 56(1), 1–25 (2018)CrossRefGoogle Scholar
  5. 5.
    Bosc, G., et al.: Local subgroup discovery for eliciting and understanding new structure-odor relationships. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 19–34. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46307-0_2CrossRefGoogle Scholar
  6. 6.
    Croy, I., Bojanowski, V., Hummel, T.: Men without a sense of smell exhibit a strongly reduced number of sexual relationships, women exhibit reduced partnership security-a reanalysis of previously published data. Biol. Psychol. 92(2), 292–294 (2013)CrossRefGoogle Scholar
  7. 7.
    Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: KDD, pp. 43–52. ACM (1999)Google Scholar
  8. 8.
    Downar, L., Duivesteijn, W.: Exceptionally monotone models—the rank correlation model class for exceptional model mining. Knowl. Inf. Syst. 51(2), 369–394 (2017). MayCrossRefGoogle Scholar
  9. 9.
    Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min. Knowl. Discov. 30(1), 47–98 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fournel, A., Ferdenzi, C., Sezille, C., Rouby, C., Bensafi, M.: Multidimensional representation of odors in the human olfactory cortex. Hum. Brain Mapp. 37, 2161–2172 (2016)CrossRefGoogle Scholar
  11. 11.
    Friston, K., Ashburner, J., Frith, C.D., Poline, J.B., Heather, J.D., Frackowiak, R.S., et al.: Spatial registration and normalization of images. Hum. Brain Mapp. 3(3), 165–189 (1995)CrossRefGoogle Scholar
  12. 12.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2(4), 189–210 (1994)CrossRefGoogle Scholar
  13. 13.
    Gottfried, J.A., Winston, J.S., Dolan, R.J.: Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49(3), 467–479 (2006)CrossRefGoogle Scholar
  14. 14.
    Grosskreutz, H., Lang, B., Trabold, D.: A relevance criterion for sequential patterns. In: ECMLPKDD, pp. 369–384 (2013)Google Scholar
  15. 15.
    Grosskreutz, H., Rüping, S.: On subgroup discovery in numerical domains. Data Min. Knowl. Discov. 19(2), 210–226 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Howard, J.D., Plailly, J., Grueschow, M., Haynes, J.D., Gottfried, J.A.: Odor quality coding and categorization in human posterior piriform cortex. Nat. Neurosci. 12(7), 932 (2009)CrossRefGoogle Scholar
  17. 17.
    Kaytoue, M., Plantevit, M., Zimmermann, A., Bendimerad, A., Robardet, C.: Exceptional contextual subgraph mining. Mach. Learn. (2017)Google Scholar
  18. 18.
    Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI (1996)Google Scholar
  19. 19.
    Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5(Feb), 153–188 (2004)Google Scholar
  20. 20.
    van Leeuwen, M., Knobbe, A.J.: Diverse subgroup set discovery. Data Min. Knowl. Discov. 25(2), 208–242 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 1–16. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87481-2_1CrossRefGoogle Scholar
  22. 22.
    Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery with numerical target concepts. Data Min. Knowl. Discov. 30(3), 711–762 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Muthukumaraswamy, S.D., Edden, R.A., Jones, D.K., Swettenham, J.B., Singh, K.D.: Resting gaba concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc. Natl. Acad. Sci. 106(20), 8356–8361 (2009)CrossRefGoogle Scholar
  24. 24.
    Rebelo de Sá, C., Duivesteijn, W., Soares, C., Knobbe, A.: Exceptional preferences mining. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 3–18. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46307-0_1CrossRefGoogle Scholar
  25. 25.
    Schofield, P.W., Ebrahimi, H., Jones, A.L., Bateman, G.A., Murray, S.R.: An olfactory ‘stress test’may detect preclinical alzheimer’s disease. BMC Neurol. 12(1), 24 (2012)CrossRefGoogle Scholar
  26. 26.
    Stevenson, R.J.: An initial evaluation of the functions of human olfaction. Chem. Senses 35(1), 3–20 (2009)CrossRefGoogle Scholar
  27. 27.
    Tukey, J.W.: Exploratory Data Analysis, vol. 2. Reading, Mass (1977)zbMATHGoogle Scholar
  28. 28.
    Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63223-9_108CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maëlle Moranges
    • 1
    • 2
  • Marc Plantevit
    • 1
    • 3
    Email author
  • Arnaud Fournel
    • 1
    • 4
  • Moustafa Bensafi
    • 1
    • 4
  • Céline Robardet
    • 1
    • 2
  1. 1.Université de LyonLyonFrance
  2. 2.INSA Lyon, LIRIS, CNRS UMR5205VilleurbanneFrance
  3. 3.Université Lyon 1, LIRIS, CNRS UMR5205VilleurbanneFrance
  4. 4.CNRS, CRNL, UMR5292, INSERM U1028BronFrance

Personalised recommendations