Skip to main content

A Hierarchical Ornstein-Uhlenbeck Model for Stochastic Time Series Analysis

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XVII (IDA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11191))

Included in the following conference series:

Abstract

Longitudinal data is ubiquitous in research, and often complemented by broad collections of static background information. There is, however, a shortage of general-purpose statistical tools for studying the temporal dynamics of complex and stochastic dynamical systems especially when data is scarce, and the underlying mechanisms that generate the observation are poorly understood. Contemporary microbiome research provides a topical example, where vast cross-sectional and longitudinal collections of taxonomic profiling data from the human body and other environments are now being collected in various research laboratories world-wide. Many classical algorithms rely on long and densely sampled time series, whereas human microbiome studies typically have more limited sample sizes, short time spans, sparse sampling intervals, lack of replicates and high levels of unaccounted technical and biological variation. We demonstrate how non-parametric models can help to quantify key properties of a dynamical system when the actual data-generating mechanisms are largely unknown. Such properties include the locations of stable states, resilience of the system, and the levels of stochastic fluctuations. Moreover, we show how limited data availability can be compensated by pooling statistical evidence across multiple individuals or studies, and by incorporating prior information in the models. In particular, we derive and implement a hierarchical Bayesian variant of Ornstein-Uhlenbeck driven t-processes. This can be used to characterize universal dynamics in univariate, unimodal, and mean reversible systems based on multiple short time series. We validate the model with simulated data and investigate its applicability in characterizing temporal dynamics of human gut microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashan, A., Gibson, T.E., Friedman, J.: Universality of human microbial dynamics. Nature 534(7606), 259–262 (2016). https://doi.org/10.1038/nature18301

    Article  Google Scholar 

  2. Carpenter, B., Gelman, A., Hoffman, M.D., et al.: Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017). https://doi.org/10.18637/jss.v076.i01

    Article  Google Scholar 

  3. David, L.A., Materna, A.C., Friedman, J.: Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014). https://doi.org/10.1186/gb-2014-15-7-r89

    Article  Google Scholar 

  4. Dennis, B., Ponciano, J.M.: Density dependent state space model for population abundance data with unequal time intervals. Ecology 95(8), 2069–2076 (2014). https://doi.org/10.1890/13-1486.1

    Article  Google Scholar 

  5. Faust, K., Bauchinger, F., Laroche, B., de Buyl, S., Lahti, L.: Signatures of ecological processes in microbial community time series. Microbiome 6, 120 (2018). https://doi.org/10.1186/s40168-018-0496-2

    Article  Google Scholar 

  6. Faust, K., Lahti, L., Gonze, D., de Vos, W.M., Raes, J.: Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25(Supplement C), 56–66 (2015). https://doi.org/10.1016/j.mib.2015.04.004

    Article  Google Scholar 

  7. Gajer, P., Brotman, R.M., Bai, G., et al.: Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4(132), 132ra52 (2012). https://doi.org/10.1126/scitranslmed.3003605

    Article  Google Scholar 

  8. Gonze, D., Coyte, K.Z., Lahti, L., Faust, K.: Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018). https://doi.org/10.1016/j.mib.2018.07.004

    Article  Google Scholar 

  9. Goodman, A.: Fitting ornstein-uhlenbeck-type student’s t-processes in stan with applications for population dynamics data (2018). https://doi.org/10.5281/zenodo.1284346

  10. Halfvarson, J., Brislawn, C.J., Lamendella, R.: Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2(5), 17004 (2017). https://doi.org/10.1038/nmicrobiol.2017.4

    Article  Google Scholar 

  11. Heinonen, M., Yildiz, C., Mannerström, H., et al.: Learning unknown ODE models with Gaussian processes, March 2018. http://arxiv.org/abs/1803.04303

  12. Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations: with R Examples. Springer Series in Statistics, 1st edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75839-8

    Book  MATH  Google Scholar 

  13. Lahti, L., Salojärvi, J., Salonen, A., Scheffer, M., de Vos, W.M.: Tipping elements in the human intestinal ecosystem. Nat. Commun. 5, 4344 (2014). https://doi.org/10.1038/ncomms5344

    Article  Google Scholar 

  14. Shah, A., Wilson, A.G., Ghahramani, Z.: Student-t processes as alternatives to gaussian processes. In: The Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS) (2014)

    Google Scholar 

  15. Solin, A., Särkka, S.: State space methods for efficient inference in student-t process regression. In: Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS) 38 (2015)

    Google Scholar 

  16. Srokowski, T.: Multiplicative levy noise in bistable systems. Eur. Phys. J. B 85(2), 65 (2012). https://doi.org/10.1140/epjb/e2012-30003-9

    Article  Google Scholar 

  17. Stan Development Team: modeling language user’s guide and reference manual, version 2.17.0 (2017). http://mc-stan.org

  18. Yildiz, C., Heinonen, M., Intosalmi, J., et al.: Learning stochastic differential equations with gaussian processes without gradient matching, July 2018. http://arxiv.org/abs/1807.05748

Download references

Acknowledgments

The work has been partially funded by Academy of Finland (grants 295741, 307127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Laitinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laitinen, V., Lahti, L. (2018). A Hierarchical Ornstein-Uhlenbeck Model for Stochastic Time Series Analysis. In: Duivesteijn, W., Siebes, A., Ukkonen, A. (eds) Advances in Intelligent Data Analysis XVII. IDA 2018. Lecture Notes in Computer Science(), vol 11191. Springer, Cham. https://doi.org/10.1007/978-3-030-01768-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01768-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01767-5

  • Online ISBN: 978-3-030-01768-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics