Advertisement

Conventional Waveguide-Fed Travelling-Wave Slot Arrays

  • Alan J. Sangster
Chapter
  • 523 Downloads
Part of the Signals and Communication Technology book series (SCT)

Abstract

While the optimally adjustable and controllable array models presented in Chap.  6 provide credible analysis procedures for fully agile phased arrays, in practice array antennas, in scenarios where compactness and cost effectiveness is a main production criterion, the requirement for multiple sources or complex branching techniques makes this option unattractive. It is much more common to adopt an array geometry, which provides the radiation pattern options described in Chap.  6, but with a single source excitation scheme. For slot antennas, such an approach is furnished by the travelling wave feed system. Again for slots travelling wave antennas are mainly implemented in waveguide, but systems based on stripline, microstrip and coplanar waveguide are also possible. In this chapter since slot radiation systems represent our primary interest the focus is directed toward the rectangular waveguide travelling wave excitation scheme, while acknowledging the alternative feed arrangements that exist. Novel compact planar array examples, aimed at meeting the requirements of evolving millimetre wave applications, are also examined.

Keywords

Slot Array Radiation Pattern Traveling-wave Array Shunt Slots Grating Lobes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.A. Bethe, Theory of diffraction by small holes. Phys. Rev. 66(7–8), 168–183 (1941)MathSciNetGoogle Scholar
  2. 2.
    A.F. Stevenson, Theory of slots in rectangular waveguide. J. Appl. Phys. 19, 24–38 (1948)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A.A. Oliner, The impedance properties of narrow radiating slots in the broad face of rectangular waveguide. IRE Trans. AP-5, 4–20 (1957)Google Scholar
  4. 4.
    I.P. Kaminow, R.J. Stegen, Waveguide Slot Array Design (Hughes Aircraft Co. Technical Memorandum, 348, Culver City, California, 1954)Google Scholar
  5. 5.
    A. Derneryd, Linear polarised microstrip antennas. IEEE Trans. Antennas Propag. AP-24, 846–850 (1976)Google Scholar
  6. 6.
    R.C. Johnson, Antenna Engineering Handbook (McGraw-Hill Inc., New York, 1993)Google Scholar
  7. 7.
    S. Silver, Microwave Antenna Theory and Design (McGraw-Hill Book Co., New York, 1949)Google Scholar
  8. 8.
    R.E. Collin, F.J. Zucker, Antenna Theory (McGraw-Hill Book Co., New York, 1969)Google Scholar
  9. 9.
    R.S. Elliott, Antenna Theory and Design (Prentice-Hall Ltd., Englewood Cliffs, N.J., 1981)Google Scholar
  10. 10.
    A. Dion, Non-resonant slotted arrays. IRE Trans. Antennas Propag. AP-6, 360–365 (1958)CrossRefGoogle Scholar
  11. 11.
    A.W. Rudge, K. Milne, A.D. Olver, P. Knight (eds.), The Handbook of Antenna Design: Volumes I and II (Peter Peregrinus Ltd., London, 1986)Google Scholar
  12. 12.
    S.K. Yong, C.-C. Chong, An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges. EURASIP J. Wirel. Commun. Netw. 2007, 1–10 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Sakakibara, Y. Kimura, A. Akiyama, J. Hirokawa, M. Ando, N. Goto, Alternating phase-fed waveguide slot arrays with a singlelayer multiple-way power divider. Proc. Inst. Electr. Eng. Microwaves Antennas Propag. 144, 425–430 (1997)CrossRefGoogle Scholar
  14. 14.
    M. Ando, J. Hirokawa, in High Gain and High Efficiency Single Layer Slotted Waveguide Array in 60 GHz Band. Proceedings of the 11th International Conference on Antennas and Propagation, Publication No. 436, vol. 1 (Edinburgh, UK, 1997), pp 464–468Google Scholar
  15. 15.
    Y. Kimura, T. Hirano, J. Hirokawa, M. Ando, Alternating-phase fed single-layer slotted waveguide arrays with chokes dispensing with narrow wall contacts. Proc. Inst. Electr. Eng. Microwaves Antennas Propag. 148, 295–301 (2001)CrossRefGoogle Scholar
  16. 16.
    Y. Kimura, Y. Miura, T. Shirosaki, T. Taniguchi, Y. Kazama, J. Hirokawa, M. Ando, A low-cost and very compact wireless terminal integrated on the back of a waveguide planar array for 26 GHz band fixed wireless access (FWA) systems. IEEE Trans. Antennas Propag. 53(8), 2456–2463 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Park, Y. Tsunemitsu, J. Hirokawa, M. Ando, Centre feed single layer slotted waveguide array. IEEE Trans. Antennas Propag. 54(5), 1474–1480 (2006)CrossRefGoogle Scholar
  18. 18.
    X.-P. Chen, K. Wu, L. Han, F. He, Low cost high gain planar array antennas for 60 GHz band applications. IEEE Trans. Antennas Propag. 58(6), 2126–2129 (2010)Google Scholar
  19. 19.
    S. Cheng, H. Yousef, H. Kratz, 79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board. IEEE Trans. Antennas Propag. 57(1), 64–71 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Miura, J. Hirokawa, M. Ando, Y. Shibuya, G. Yoshida, Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60 GHz-band. IEEE Trans. Antennas Propag. 59(8), 2844–2851 (2011)CrossRefGoogle Scholar
  21. 21.
    T. Tomura, Y. Miura, M. Zhang, J. Hirokawa, M. Ando, A 45o linearly polarised hollow waveguide corporate-feed slot array antenna in the 60 GHz band. IEEE Trans. Antennas Propag. 60(8), 3640–3646 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Zhang, J. Hirokawa, M. Ando, Fabrication of a slotted waveguide array at 94 GHz by diffusion bonding of laminated thin plates. IEICE Trans. Commun. E93-B(10), 2538–2544 (Oct 2010)Google Scholar
  23. 23.
    D. Kim, M. Zhang, J. Hirokawa, M. Ando, in Design of a Dual-Polarisation Waveguide Slot Array Antenna Using Diffusion Bonding of Laminated Thin Plates for 60 GHz Band. IEEE Antennas and Propagation Society International Symposium, 2012. [ https://doi.org/10.1109/aps.2012.6348506]
  24. 24.
    S.S. Oh, J.W. Lee, M.S. Song, Y.S. Kim, Two-layer slotted waveguide antenna array with broad reflection/gain bandwidth at millimetre-wave frequencies. IEE Proc. Microwave Antennas Propag. 51(5), 393–398 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alan J. Sangster
    • 1
  1. 1.EdinburghUK

Personalised recommendations