Compact Planar Resonator Arrays

  • Alan J. Sangster
Part of the Signals and Communication Technology book series (SCT)


Compact planar arrays based on resonators generally of the Fabry-Perot type, have, as with reflectarrays, their origins in the technology of planar periodic surfaces sometimes referred to as frequency selective surfaces (FSS) or metamaterials. The cavity resonator antenna (CRA) which is arguably better known as a partially reflective surface antenna (PRS) can be a source of very compact geometries. With its quite surprising potential for high directivity in a compact package, the PRS antenna has recently been attracting growing interest. Furthermore, despite its low to moderate bandwidth the gain advantages continue to motivate the use of PRS antennas in space applications, in remote sensing, or in satellite communications. The introduction of passive periodic surfaces such as frequency selective surfaces, metamaterials and leaky-wave surfaces into the CRA package has enlarged the range of possible applications by offering the potential of introducing inexpensive electronic beam steering into antennas in a compact package, making mobile communications roles, and applications in ‘wireless’ networks, seem distinctly possible.


Partially Reflective Surface (PRS) Frequency Selective Surfaces (FSS) Periodic Surface Artificial Magnetic Conductor quasi-TE Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. von Trentini, Partially reflective sheet arrays. IRE Trans. Antennas Propag. 4(4), 666–671 (1956)CrossRefGoogle Scholar
  2. 2.
    A.P. Feresidis, G. Goussetis, S. Wang, J.C. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans. Antennas Propag. 53(1), 209–215 (2005)CrossRefGoogle Scholar
  3. 3.
    N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, H. Legay, A metallic Fabry-Perot directive antenna. IEEE Trans. Antennas Propag. 54(1), 220–224 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Foroozesh, L. Shafai, Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Trans. Antennas Propag. 58(2), 258–270 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Zhao, D.R. Jackson, J.T. Williams, H.-Y.D. Yang, A.A. Oliner, 2-D periodic leaky-wave antennas-part I: metal patch design. IEEE Trans. Antennas Propag. 53(11), 3505–3514 (2005)CrossRefGoogle Scholar
  6. 6.
    T. Zhao, D.R. Jackson, J.T. Williams, 2-D periodic leaky-wave antennas-part II: slot design. IEEE Trans. Antennas Propag. 53(11), 3515–3524 (2005)CrossRefGoogle Scholar
  7. 7.
    A.P. Feresidis, J.C. Vardaxoglou, High gain planar antenna using optimised partially reflective surfaces. IEEE Proc. Microwaves Antennas Propag. 148(6), 345–350 (2001)CrossRefGoogle Scholar
  8. 8.
    C. Mateo-Segura, G. Goussetis, A.P. Feresidis, Sub-wavelength profile 2-D leaky-wave antennas with two periodic layers. IEEE Trans. Antennas Propag. 59(2), 416–424 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Mateo-Segura, A.P. Feresidis, G. Goussetis, Bandwidth enhancement of 2-D leaky-wave antennas using double-layer periodic surfaces. IEEE Trans. Antennas Propag. 62(2), 586–593 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Itoh, W. Menzel, A full-wave analysis method for open microstrip structures. IEEE Trans. Antennas Propag. AP-29(1), 63–68 (1981)CrossRefGoogle Scholar
  11. 11.
    L. Zhou, H. Li, Y. Qin, Z. Wei, C.T. Chan, Directive emissions from subwavelength metamaterial-based cavities. Appl. Phys. Lett. 86, 101101-1–101101-3 (2005)CrossRefGoogle Scholar
  12. 12.
    A.R. Weily, T.S. Bird, Y.J. Guo, A reconfigurable high–gain partially reflecting surface antenna. IEEE Trans. Antennas Propag. 56(11), 3382–3390 (2008)CrossRefGoogle Scholar
  13. 13.
    T. Debogovic, J. Perruisseau-Carrier, J. Bartolic, Partially reflective surface antenna with dynamic beamwidth control. IEEE Antennas Wirel. Propag. Lett. 9, 1157–1160 (2010)CrossRefGoogle Scholar
  14. 14.
    T. Debogovic, J. Bartolic, J. Perruisseau-Carrier, Array-fed partially reflective surface antenna with dynamic beamwidth control and beam-steering. Paper presented at the 6th European Conference on Antennas and Propagation (EuCAP 2012, Prague, 2012)Google Scholar
  15. 15.
    T. Debogovic, J. Perruisseau-Carrier, Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control. IEEE Trans. Antennas Propag. 62(1), 446–449 (2015)CrossRefGoogle Scholar
  16. 16.
    L.-Y. Ji, Y. Jay Guo, P.-Y. Qin, S.-X. Gong, R. Mittra, A reconfigurable partially reflective surface (PRS) antenna for beam steering. IEEE Trans. Antennas Propag. 63(6), 2387–2395 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Guzman-Quirós, J.L. Gómez-Tornero, A.R. Weily, Y.J. Guo, Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface. IEEE Trans. Antennas Propag. 60(11), 5046–5055 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Garcia-Vigueras, J.L. Gomez-Tornero, G. Goussetis, A.R. Weily, Y.J. Guo, 1D-leaky wave antenna employing parallel-plate waveguide loaded with a PRS and HIS. IEEE Trans. Antennas Propag. 59(10), 3687–3694 (2011)CrossRefGoogle Scholar
  19. 19.
    D. Sievenpiper, J. Schaffner, J.J. Lee, S. Livingston, A steerable leaky wave antenna using a tunable impedance ground plane. IEEE Antennas Wirel. Propag. Lett. 1, 179–182 (2002)CrossRefGoogle Scholar
  20. 20.
    D. Sievenpiper, J. Schaffner, H. Jae Song, R.Y. Loo, G. Tangonan, Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 51(10), 2713–2722 (2003)CrossRefGoogle Scholar
  21. 21.
    D. Sievenpiper, Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface. IEEE Trans. Antennas Propag. 53(1), 236–247 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    F. Costa, A. Monorchio, S. Talarico, F.M. Valeri, An active high-impedance surface for low-profile tunable and steerable antennas. IEEE Antennas Wirel. Propag. Lett. 7, 676–680 (2008)CrossRefGoogle Scholar
  23. 23.
    A. Ourir, S.N. Burokur, A. de Lustrac, Phase-varying metamaterial for compact steerable directive antennas. Electron. Lett. 43(9), 493–494 (2007)CrossRefGoogle Scholar
  24. 24.
    Y.R. Lee, A. Charaya, D.S. Lockyer, J.C. Vardaxoglou, Dipole and tripole metallodielectric photonic bandgap (MPGB) structures for microwave filter and antenna applications. Proc. IEEE Optoelectron. 127(6), 395–400 (2000)CrossRefGoogle Scholar
  25. 25.
    H.L. Zhu, S.W. Cheung, X.H. Liu, T.I. Yuk, Design of polarisation reconfigurable antenna using metasurface. IEEE Trans. Antennas Propag. 62(6), 2891–2898 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, J. von Hagen, M. Younis, C. Fischer, W. Wiesbeck, Planar artificial magnetic conductors and patch antennas. IEEE Trans. Antennas Propag. 51(10), 2704–2712 (2003). (Special Issue on Metamaterials)CrossRefGoogle Scholar
  27. 27.
    S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, P. Vincent, A metamaterial for directive emissions. Phys. Rev. Lett. 89(21), 2139–2142 (2002)CrossRefGoogle Scholar
  28. 28.
    J.B. Pendry, Negative refraction makes perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)CrossRefGoogle Scholar
  29. 29.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Young, Extremely low frequency plasmons in metallic mesostructure. Phys. Rev. Lett. 76(20), 4773–4776 (1996)CrossRefGoogle Scholar
  30. 30.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced non-linear phenomena. IEEE Trans. Microwave Theor. Tech. 47(11), 2075–2084 (1999)CrossRefGoogle Scholar
  31. 31.
    R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefGoogle Scholar
  32. 32.
    B.A. Munk, Metamaterials: Critique and Alternatives (Wiley, New York, 2009)CrossRefGoogle Scholar
  33. 33.
    V.G. Veselago, The electrodynamics of substance with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10(4), 509–524 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alan J. Sangster
    • 1
  1. 1.EdinburghUK

Personalised recommendations