Skip to main content

Detecting Acute Lymphoblastic Leukemia in down Syndrome Patients Using Convolutional Neural Networks on Preprocessed Mutated Datasets

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11228))

Included in the following conference series:

  • 538 Accesses

Abstract

Convolutional neural networks extract high-level abstraction features using minimum preprocessing steps. In this research, we propose a new approach in classifying Down Syndrome with Acute Lymphoblastic Leukemia using a convolutional neural network. Sequences are represented using a one hot vector depending on point mutation as input to the CNN model. Therefore, it conserves the necessary position data of each nucleotide in the sequence. Using two different genomic datasets, our proposed model has achieved significant improvements over classical classification techniques, with an increased accuracy of 98%, and 98.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, T.D., Jeelall, Y., Talaulikar, D., Goodnow, C.C., Field, M.A.: DeepSNVMiner: a sequence analysis tool to detect emergent, rare mutations in subsets of cell populations. PeerJ 4, 1–13 (2016)

    Article  Google Scholar 

  2. Blekas, K., Fotiadis, D.I., Likas, A.: Motif-based protein sequence classification using neural networks. J. Comput. Biol. 12(1), 64–82 (2005)

    Article  Google Scholar 

  3. Buitenkamp, T.D., et al.: Acute lymphoblastic leukemia in children with down syndrome: a retrospective analysis from the ponte di legno study group. Blood 123(1), 70–77 (2014)

    Article  Google Scholar 

  4. Choong, A.C.H., Lee, N.K.: Evaluation of convolutionary neural networks modeling of DNA sequences using ordinal versus one-hot encoding method. bioRxiv, pp. 60–65 (2017)

    Google Scholar 

  5. Hannun, A., et al.: Deep speech: scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567 (2014)

  6. Johnson, R., Zhang, T.: Effective use of word order for text categorization with convolutional neural networks. arXiv preprint arXiv:1412.1058 (2014)

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  8. Leung, M.K.K., Delong, A., Alipanahi, B., Frey, B.J.: Machine learning in genomic medicine: a review of computational problems and data sets. Proc. IEEE 104(1), 176–197 (2016)

    Article  Google Scholar 

  9. Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network cascade for face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5325–5334 (2015)

    Google Scholar 

  10. Li, H.: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27(21), 2987–2993 (2011)

    Article  Google Scholar 

  11. Li, H., et al.: The sequence alignment/map format and samtools. Bioinformatics 25(16), 2078–2079 (2009)

    Article  Google Scholar 

  12. Loudin, M.G., et al.: Genomic profiling in down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles. Leukemia 25(10), 1555 (2011)

    Article  Google Scholar 

  13. Mahdieh, N., Rabbani, B.: An overview of mutation detection methods in genetic disorders. Iran. J. Pediatr. 23(4), 375–388 (2013)

    Google Scholar 

  14. Maloney, K.W.: Acute lymphoblastic leukaemia in children with down syndrome: an updated review. Br. J. Haematol. 155(4), 420–425 (2011)

    Article  Google Scholar 

  15. McCarthy, M.I., MacArthur, D.G.: Human disease genomics: from variants to biology. Genome Biol. 18(1), 1–3 (2017)

    Article  Google Scholar 

  16. Mikolov, T.: Statistical language models based on neural networks. Presentation at Google, Mountain View (2012)

    Google Scholar 

  17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  18. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinform. 18(5), 851–869 (2017)

    Google Scholar 

  19. Ng, P.: dna2vec: Consistent vector representations of variable-length k-mers. arXiv preprint arXiv:1701.06279 (2017)

  20. Nguyen, N.G., et al.: DNA sequence classification by convolutional neural network. J. Biomed. Sci. Eng. 9(05), 280–286 (2016)

    Article  Google Scholar 

  21. Pan, X., Shen, H.-B.: Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks. Bioinformatics p. bty364 (2018)

    Google Scholar 

  22. Ramirez-Gonzalez, R.H., Bonnal, R., Caccamo, M., MacLean, D.: Bio-samtools: ruby bindings for samtools, a library for accessing bam files containing high-throughput sequence alignments. Source Code Biol. Med. 7(1), 1–6 (2012)

    Article  Google Scholar 

  23. Srinivas, S., et al.: A taxonomy of deep convolutional neural nets for computer vision. arXiv preprint arXiv:1601.06615 (2016)

  24. Venter, J.C., et al.: The sequence of the human genome. Science 291(5507), 1304–1351 (2001)

    Article  Google Scholar 

  25. Wang, Q., et al.: Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers. Genome Med. 5(10), 1–8 (2013)

    Article  Google Scholar 

  26. Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image recognition, 7(8). arXiv preprint arXiv:1501.02876 (2015)

  27. Yan, S., Xia, Y., Smith, J.S., Lu, W., Zhang, B.: Multiscale convolutional neural networks for hand detection. Appl. Comput. Intell. Soft Comput. 2017 (2017)

    Article  Google Scholar 

  28. Yue, T., Wang, H.: Deep learning for genomics: a concise overview. arXiv preprint arXiv:1802.00810 (2018)

  29. Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics 32(12), i121–i127 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maram Shouman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shouman, M., Belal, N., El Sonbaty, Y. (2018). Detecting Acute Lymphoblastic Leukemia in down Syndrome Patients Using Convolutional Neural Networks on Preprocessed Mutated Datasets. In: Alves, R. (eds) Advances in Bioinformatics and Computational Biology. BSB 2018. Lecture Notes in Computer Science(), vol 11228. Springer, Cham. https://doi.org/10.1007/978-3-030-01722-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01722-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01721-7

  • Online ISBN: 978-3-030-01722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics