Skip to main content

An Argumentation Theory-Based Multiagent Model to Annotate Proteins

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2018)

Abstract

Many computational and experimental methods have been proposed for predicting functions performed by proteins. In silico methods are time and resource-consuming, due to the large amount of data used for annotation. Moreover, computational predictions for protein functions are usually incomplete and biased. Although some tools combine different annotation strategies to predict functions, biologists (human experts) have to use their knowledge to analyze and improve these predictions. This complex scenario presents suitable features for a multiagent approach, e.g., expert knowledge, distributed resources, and an environment that includes different computational methods. Also, argumentation theory can increase the expressiveness of biological knowledge of proteins, considering inconsistencies and incompleteness of information. The main goal of this work is to present an argumentation theory-based multiagent model to annotate proteins, called ArgMAS-AP. Additionally, we discuss a theoretical example with real data to evaluate the suitability of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Inconsistent is a protein that has at least one incorrectly assigned annotation.

  2. 2.

    https://www.uniprot.org/help/api.

  3. 3.

    http://www.uniprot.org/uniprot/P0ACC1.

  4. 4.

    http://www.uniprot.org/uniprot/Q6F0I4.

  5. 5.

    http://www.uniprot.org/uniprot/Q92G13.

  6. 6.

    https://bitbucket.org/erickok/baidd.

References

  1. Altenhoff, A.M., Studer, R.A., Robinson-Rechavi, M., et al.: Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs. PLOS Comput. Biol. 8(5), 1–10 (2012)

    Article  Google Scholar 

  2. Altschul, S.F., Gish, W., Miller, W., et al.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Article  Google Scholar 

  3. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  4. Bairoch, A., Apweiler, R., Wu, C.H., et al.: The universal protein resource (uniprot). Nucl. Acids Res. 33(Suppl. 1), D154–D159 (2005)

    Google Scholar 

  5. Barrell, D., Dimmer, E., Huntley, R.P., et al.: The goa database in 2009-an integrated gene ontology annotation resource. Nucl. Acids Res. 37(Suppl. 1), D396–D403 (2009)

    Article  Google Scholar 

  6. Bernardes, J.S., Pedreira, C.E.: A review of protein function prediction under machine learning perspective. Recent Pat. Biotechnol. 7(2), 122–141 (2013)

    Article  Google Scholar 

  7. Bork, P., Dandekar, T., Diaz-Lazcoz, Y., et al.: Predicting function: from genes to genomes and back. J. Mol. Biol. 283(4), 707–725 (1998)

    Article  Google Scholar 

  8. Bratman, M.E.: Intentions, Plans, and Practical Reasoning. Harvard University Press, Cambridge (1987)

    Google Scholar 

  9. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5–6), 286–310 (2007)

    Article  MathSciNet  Google Scholar 

  10. Charwat, G., Dvořák, W., Gaggl, S.A., et al.: Methods for solving reasoning problems in abstract argumentation a survey. Artif. Intell. 220, 28–63 (2015)

    Article  MathSciNet  Google Scholar 

  11. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)

    Article  Google Scholar 

  12. van Eemeren, F.H., Grootendorst, R., Henkemans, A.F.S., et al.: Fundamentals of Argumentation Theory. Handbook of Historical Backgrounds and Contemporary developments, 1st edn. Lawrence Erlbaum Associates, New Jersey (1996)

    Google Scholar 

  13. Finn, R.D., Bateman, A., Clements, J., et al.: Pfam: the protein families database. Nucl. Acids Res. 42(Database issue), D222–D230 (2014)

    Article  Google Scholar 

  14. Finn, R.D., Mistry, J., Schuster-Böckler, B.: Pfam: clans, web tools and services. Nucl. Acids Res. 34(Suppl. 1), D247 (2006)

    Article  Google Scholar 

  15. Forslund, K., Pekkari, I., Sonnhammer, E.L.: Domain architecture conservation in orthologs. BMC Bioinf. 12(1), 326 (2011)

    Article  Google Scholar 

  16. Khler, S., Vasilevsky, N.A., Engelstad, M., et al.: The human phenotype ontology in 2017. Nucl. Acids Res. 45(D1), D865 (2017)

    Article  Google Scholar 

  17. Kok, E.M.: Exploring the practical benefits of argumentation in multi-agent deliberation. Ph.D. thesis, Utrecht University (2013)

    Google Scholar 

  18. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: context and recent developments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75526-5_1

    Chapter  MATH  Google Scholar 

  19. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)

    Article  Google Scholar 

  20. Oishi, E.: Austins speech act theory and the speech situation. Esercizi Filosofici 1(1), 1–14 (2006)

    Google Scholar 

  21. Pandey, G., Kumar, V., Steinbach, M.: Computational approaches for protein function prediction: a survey. Technical report, Department of Computer Science and Engineering, University of Minnesota, Twin Cities (2006)

    Google Scholar 

  22. Pearson, W.R.: Protein function prediction: problems and pitfalls. Curr. Protoc. Bioinf. 51, 4–12 (2015)

    Google Scholar 

  23. Prakken, H.: An abstract framework for argumentation with structured arguments. Argum. Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  24. Rao, A.S., George, M.P.: BDI agents: From theory to practice. In: First International Conference on Multi-Agent Systems (ICMAS-95) (1995)

    Google Scholar 

  25. Shehu, A., Barbará, D., Molloy, K.: A survey of computational methods for protein function prediction. In: Wong, K.C. (ed.) Big Data Analytics in Genomics, pp. 225–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41279-5_7

    Chapter  Google Scholar 

  26. Shrager, J.: The fiction of function. Bioinformatics 19(15), 1934–1936 (2003)

    Article  Google Scholar 

  27. Stuart Russell, P.N.: Artificial intelligence: a modern approach. Prentice Hall Series in Artificial Intelligence, 3rd edn. Prentice Hall, Upper Saddle River (2010)

    MATH  Google Scholar 

  28. Tiwari, A.K., Srivastava, R.: A survey of computational intelligence techniques in protein function prediction. Int. J. Proteomics 2014, 22 p. (2014). https://doi.org/10.1155/2014/845479

    Article  Google Scholar 

  29. Webb, E.C.: Enzyme nomenclature. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. Elsevier Inc., Academic Press, Cambridge (1992)

    Google Scholar 

  30. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Modern Approach to Artificial Intelligence, 1st edn. The MIT Press, Cambridge (1999)

    Google Scholar 

  31. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, 115–152 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

D. Souza and W. Silva kindly thank CAPES for the scholarship. M. E. Walter thanks CNPq for the productivity fellowship (project 308524/2015-2). C. Ralha also thanks CNPq for the productivity fellowship (project 303863/2015-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Souza, D.S., Silva, W.M.C., Ralha, C.G., Walter, M.E.M.T. (2018). An Argumentation Theory-Based Multiagent Model to Annotate Proteins. In: Alves, R. (eds) Advances in Bioinformatics and Computational Biology. BSB 2018. Lecture Notes in Computer Science(), vol 11228. Springer, Cham. https://doi.org/10.1007/978-3-030-01722-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01722-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01721-7

  • Online ISBN: 978-3-030-01722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics