Skip to main content

Combining Self-Organisation with Decision-Making and Planning

  • Conference paper
  • First Online:
Multi-Agent Systems and Agreement Technologies (EUMAS 2017, AT 2017)

Abstract

Coordination of mobile multi-robot systems in a self-organised manner is in the first place beneficial for simple robots in common swarm robotics scenarios. Moreover, sophisticated robot systems as for instance in disaster rescue teams, service robotics and robot soccer can also benefit from a decentralised coordination while performing complex tasks. In order to facilitate self-organised sophisticated multi-robot applications a suitable approach is to combine individual decision-making and planning with self-organization. We introduce a framework for the implementation and application of self-organization mechanisms in multi-robot scenarios. Furthermore, the integration into the hybrid behaviour planning framework ROS Hybrid Behaviour Planner is presented. This combined approach allows for a goal-directed application of self-organisation and provides a foundation for an automated selection of suitable mechanisms.

This work was partially supported by the German Federal Ministry of Education and Research (BMBF grants 13N14093, project EffFeu).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/DAInamite/rhbp.

  2. 2.

    https://github.com/cehberlin/ros_tutorials/tree/clean_robots.

References

  1. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 1, pp. 73–80. IEEE (2000)

    Google Scholar 

  2. Bohren, J., Cousins, S.: The SMACH high-level executive [ROS news]. IEEE Robot. Autom. Mag. 17(4), 18–20 (2010)

    Article  Google Scholar 

  3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  4. Colledanchise, M., Ögren, P.: How behavior trees modularize hybrid control systems and generalize sequential behavior compositions, the subsumption architecture, and decision trees. IEEE Trans. Robot. 33(2), 372–389 (2017)

    Article  Google Scholar 

  5. De Wolf, T., Holvoet, T.: Emergence versus self-organisation: different concepts but promising when combined. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2004. LNCS (LNAI), vol. 3464, pp. 1–15. Springer, Heidelberg (2005). https://doi.org/10.1007/11494676_1

    Chapter  Google Scholar 

  6. Deneubourg, J.-L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. J. Insect Behav. 3(2), 159–168 (1990)

    Article  Google Scholar 

  7. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Robot. 17(2–3), 223–245 (2004)

    Article  Google Scholar 

  8. Edmonds, B.: Using the experimental method to produce reliable self-organised systems. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2004. LNCS (LNAI), vol. 3464, pp. 84–99. Springer, Heidelberg (2005). https://doi.org/10.1007/11494676_6

    Chapter  Google Scholar 

  9. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Arcos, J.L., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Natural Comput. 12(1), 43–67 (2013)

    Article  MathSciNet  Google Scholar 

  10. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S.: BIO-CORE: bio-inspired self-organising mechanisms core. In: Hart, E., Timmis, J., Mitchell, P., Nakamo, T., Dabiri, F. (eds.) BIONETICS 2011. LNICST, vol. 103, pp. 59–72. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32711-7_5

    Chapter  Google Scholar 

  11. Foote, T.: tf: the transform library. In: 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Open-Source Software Workshop, pp. 1–6, April 2013

    Google Scholar 

  12. Fox, M., Long, D.: PDDL2.1: an Extension to PDDL for expressing temporal planning domains. J. Artif. Int. Res. 20(1), 61–124 (2003)

    Article  Google Scholar 

  13. Francesca, G., et al.: AutoMoDe-Chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2–3), 125–152 (2015)

    Article  Google Scholar 

  14. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. In: Proceedings of the 14th IFAC World Congres, pp. 509–514 (1999)

    Google Scholar 

  15. Graff, D., Richling, J., Werner, M.: jSwarm: distributed coordination in robot swarms. In: Robotic Sensor Networks (RSN) (2014)

    Google Scholar 

  16. Hrabia, C.-E., Wypler, S., Albayrak, S.: Towards goal-driven behaviour control of multi-robot systems. In: 2017 3nd International Conference on Control, Automation and Robotics (ICCAR), pp. 166–173, April 2017

    Google Scholar 

  17. Kazadi, S.T.: Swarm engineering. phd, California Institute of Technology (2000)

    Google Scholar 

  18. Mamei, M., Vasirani, M., Zambonelli, F.: Experiments of morphogenesis in swarms of simple mobile robots. Appl. Artif. Intell. 18, 903–919 (2004)

    Article  Google Scholar 

  19. Matarić, M.J.: Issues and approaches in the design of collective autonomous agents. Robot. Auton. Syst. 16(2–4), 321–331 (1995)

    Article  Google Scholar 

  20. Nau, D.S., et al.: Shop2: an HTN planning system. J. Artif. Intell. Res. 20, 379–404 (2003)

    Article  Google Scholar 

  21. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control. 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  22. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3794–3800. IEEE (2016)

    Google Scholar 

  23. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference 1999, pp. 763–782 (1999)

    Google Scholar 

  24. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-organisation and emergence in MAS: an overview. Informatica (Slovenia) 30(1), 45–54 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher-Eyk Hrabia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hrabia, CE., Kaiser, T.K., Albayrak, S. (2018). Combining Self-Organisation with Decision-Making and Planning. In: Belardinelli, F., Argente, E. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2017 2017. Lecture Notes in Computer Science(), vol 10767. Springer, Cham. https://doi.org/10.1007/978-3-030-01713-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01713-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01712-5

  • Online ISBN: 978-3-030-01713-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics