Skip to main content

Comparison Criteria for Argumentation Semantics

  • Conference paper
  • First Online:
Multi-Agent Systems and Agreement Technologies (EUMAS 2017, AT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10767))

Abstract

Argumentation reasoning is a way for agents to evaluate a situation. Given a framework made of conflicting arguments, a semantics allows to evaluate the acceptability of the arguments. It may happen that the semantics associated to the framework has to be changed. In order to perform the most suitable change, the current and a potential new semantics have to be compared. Notions of difference measures between semantics have already been proposed, and application cases where they have to be minimized when a change of semantics has to be performed, have been highlighted. This paper develops these notions, it proposes an additional kind of difference measure, and shows application cases where measures may have to be maximized, and combined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Up to our knowledge, the complexity class of \( Cred _{is}\), \( Skept _{is}\) and \( Exist _{is}\) has not yet been determined.

  2. 2.

    Under the usual assumptions about inclusions between complexity classes.

References

  1. Amgoud, L., Ben-Naim, J.: Ranking-based semantics for argumentation frameworks. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 134–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40381-1_11

    Chapter  Google Scholar 

  2. Amgoud, L., Dimopoulos, Y., Moraitis, P.: A unified and general framework for argumentation-based negotiation. In: Proceedings of AAMAS 2007, p. 158 (2007)

    Google Scholar 

  3. Amgoud, L., Dimopoulos, Y., Moraitis, P.: Making decisions through preference-based argumentation. In: Proceedings of KR 2008, pp. 113–123 (2008)

    Google Scholar 

  4. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26, 365–410 (2011)

    Article  Google Scholar 

  5. Baroni, P., Giacomin, M.: Skepticism relations for comparing argumentation semantics. Int. J. Approx. Reason. 50(6), 854–866 (2009)

    Article  MathSciNet  Google Scholar 

  6. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation semantics. Artif. Intell. 168, 162–210 (2005)

    Article  MathSciNet  Google Scholar 

  7. Baumann, R.: What does it take to enforce an argument? Minimal change in abstract argumentation. In: Proceedings of ECAI 2012, pp. 127–132 (2012)

    Google Scholar 

  8. Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonicity results. In: Proceedings of COMMA 2010, pp. 75–86 (2010)

    Google Scholar 

  9. Besnard, P., Doutre, S., Herzig, A.: Encoding argument graphs in logic. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 443, pp. 345–354. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08855-6_35

    Chapter  Google Scholar 

  10. Besnard, P., Doutre, S., Ho, V.H., Longin, D.: SESAME - a system for specifying semantics in abstract argumentation. In: Thimm, M., Cerutti, F., Strass, H., Vallati, M. (eds.) Proceedings of SAFA 2016, vol. 1672, pp. 40–51. CEUR Workshop Proceedings (2016)

    Google Scholar 

  11. Bonzon, E., Delobelle, J., Konieczny, S., Maudet, N.: A comparative study of ranking-based semantics for abstract argumentation. In: Proceedings of AAAI 2016 (2016)

    Google Scholar 

  12. Caminada, M.: Semi-stable semantics. In: Proceedings of COMMA 2006 (2006)

    Google Scholar 

  13. Caminada, M.: Comparing two unique extension semantics for formal argumentation: ideal and eager (2007)

    Google Scholar 

  14. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11518655_28

    Chapter  Google Scholar 

  15. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theor. Comput. Sci. 170(1–2), 209–244 (1996)

    Article  MathSciNet  Google Scholar 

  16. Doutre, S., Mailly, J.G.: Quantifying the Difference between Argumentation Semantics. In: Computational models of argument (COMMA), vol. 287, pp. 255–262. IOS Press (2016)

    Google Scholar 

  17. Doutre, S., Mailly, J.-G.: Semantic change and extension enforcement in abstract argumentation. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds.) SUM 2017. LNCS (LNAI), vol. 10564, pp. 194–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67582-4_14

    Chapter  Google Scholar 

  18. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  19. Dung, P., Mancarella, P., Toni, F.: Adialectic procedure for sceptical, assumption-based argumentation. In: COMMA 2006 (2006)

    Google Scholar 

  20. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173, 1559–1591 (2009)

    Article  MathSciNet  Google Scholar 

  21. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif. Intell. 141(1/2), 187–203 (2002)

    Article  MathSciNet  Google Scholar 

  22. Dunne, P.E., Caminada, M.: Computational complexity of semi-stable semantics in abstract argumentation frameworks. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 153–165. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87803-2_14

    Chapter  MATH  Google Scholar 

  23. Dunne, P.E., Dvorák, W., Woltran, S.: Parametric properties of ideal semantics. Artif. Intell. 202, 1–28 (2013)

    Article  MathSciNet  Google Scholar 

  24. Dvorák, W., Spanring, C.: Comparing the expressiveness of argumentation semantics. In: Proceedings of COMMA 2012, vol. 245, pp. 261–272. IOS Press (2012)

    Google Scholar 

  25. Dvorák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)

    Article  MathSciNet  Google Scholar 

  26. Grossi, D., Modgil, S.: On the graded acceptability of arguments. In: Proceedings of IJCAI 2015, pp. 868–874 (2015)

    Google Scholar 

  27. Hunter, A.: Opportunities for argument-centric persuasion in behaviour change. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 48–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_4

    Chapter  Google Scholar 

  28. Papadimitriou, C.H.: Computational complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  29. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation stages. In: Proceedings of BNAIC 1996 (1996)

    Google Scholar 

Download references

Acknowledgements

This work benefited from the support of the project AMANDE ANR-13-BS02-0004 of the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Guy Mailly .

Editor information

Editors and Affiliations

A Proofs

A Proofs

Proof

(Proof of Proposition 2). From our definition of characterizations, the mapping that associates a semantics \(\sigma \) to a set of properties \(Prop(\sigma )\) guarantees that a semantics cannot be associated with two different sets of properties, and a same set of properties cannot correspond to different semantics.

The weighted sum on sets of properties obviously defines a distance (in particular, when all weights are identical, we obtain the well-known Hamming distance; other weights just define generalization of Hamming distance). Since we can identify the semantics to the sets of properties, \(\delta _{prop}^w\) is a distance.

Proof

(Proof of Proposition 3). From the definition of the \(\varSigma \)-relation graph,

  • the difference between \(\sigma _1\) and \(\sigma _2\) is 0 iff they are the same node of the graph (i.e. \(\sigma _1 = \sigma _2\)), so coincidence is satisfied;

  • the shortest path between two semantics \(\sigma _1, \sigma _2\) has the same length whatever the direction of the path (from \(\sigma _1\) to \(\sigma _2\), or vice-versa), since we do not consider the direction of arrows, so symmetry is satisfied;

  • the shortest path between \(\sigma _1\) and \(\sigma _3\) is at worst the concatenation of the paths \((\sigma _1,\dots ,\sigma _2)\) and \((\sigma _2,\dots ,\sigma _3)\), or (if possible) a shorter one, so triangular inequality is satisfied.

Proof

(Proof of Proposition 4). Example 6 gives the counter-examples for coincidence and symmetry.

Proof

(Proof of Proposition 5). We consider a given AF F and a set of semantics \(\varSigma = \{\sigma _1,\dots ,\sigma _n\}\), such that for all \(\sigma _i, \sigma _j \in \varSigma \) with \(\sigma _i \ne \sigma _j\), \(Ext_{\sigma _i}(F) \nsubseteq Ext_{\sigma _n}(F)\).

Obviously, for any semantics \(\sigma _i\), \(\delta _F^{d_H,\sum }(\sigma _i,\sigma _i) = 0\). Now, let us assume the existence of two semantics \(\sigma _i, \sigma _j \in \varSigma \) such that \(\delta _F^{d_H,\sum }(\sigma _i,\sigma _j) = 0\). We just rewrite this, following the definition of the measure: \(\sum _{\epsilon \in Ext_{\sigma _i}(F)} \min _{\epsilon ' \in Ext_{\sigma _j}(F)} d_H(\epsilon ,\epsilon ') = 0\). Since all distances are non-negative number, if the sum is equal to zero it means that \(\forall \epsilon \in Ext_{\sigma _i}(F)\), \(\min _{\epsilon ' \in Ext_{\sigma _j}(F)} d_H(\epsilon ,\epsilon ') = 0\). Because of the properties of the Hamming distance, it means that \(\epsilon \in Ext_{\sigma _j}\), and so \(Ext_{\sigma _i} \subseteq Ext_{\sigma _j}\). From our starting assumption, we deduce that \(\sigma _i = \sigma _j\).

Proof

(Proof of Proposition 6). From the definition of the measure, \(\delta _{F,sym}^{d_H,\sum }(\sigma _1,\sigma _2) = 0\) iff \(Ext_{\sigma _1}(F) = Ext_{\sigma _2}(F)\). Under our assumptions, this is possible only if \(\sigma _1 = \sigma _2\). The other direction is trivial, so coincidence is satisfied. Symmetry is obviously satisfied, since \(\sigma _1,\sigma _2\) can be inverted in \(\max (\delta _{F}^{d,\otimes }(\sigma _1,\sigma _2),\delta _{F}^{d,\otimes }(\sigma _2,\sigma _1))\).

Proof

(Proof of Proposition 7). Weak coincidence and symmetry are trivial from the definition of the measures.

$$\begin{aligned} \begin{array}{rcl} \delta _{F,sk}^{d}(\sigma _1,\sigma _2) + \delta _{F,sk}^{d}(\sigma _2,\sigma _3) &{} = &{} d(sk_{\sigma _1}(F), sk_{\sigma _2}(F)) + d(sk_{\sigma _2}(F), sk_{\sigma _3}(F)) \\ &{} \ge &{} d(sk_{\sigma _1}(F), sk_{\sigma _3}(F)) = \delta _{F,sk}^{d}(\sigma _1,\sigma _3) \end{array} \end{aligned}$$

The same reasoning apply for the credulous acceptance measure. So both satisfy the triangular inequality. Coincidence is not satisfied by the skeptical acceptance measure. For instance, for each AF F, \(\emptyset \in Ext_{cf}(F)\) and \(\emptyset \in Ext_{adm}(F)\), so \(sk_{cf}(F) = sk_{adm}(F) = \emptyset \), and so \(\delta _{F,skep}^{d}(cf,adm) = 0\). The same conclusion holds as soon as two semantics yield the same skeptically or credulously accepted arguments.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doutre, S., Mailly, JG. (2018). Comparison Criteria for Argumentation Semantics. In: Belardinelli, F., Argente, E. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2017 2017. Lecture Notes in Computer Science(), vol 10767. Springer, Cham. https://doi.org/10.1007/978-3-030-01713-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01713-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01712-5

  • Online ISBN: 978-3-030-01713-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics