Skip to main content

Automatic Estimation of Harmonic Tension by Distributed Representation of Chords

  • Conference paper
  • First Online:
Music Technology with Swing (CMMR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11265))

Included in the following conference series:

Abstract

The buildup and release of a sense of tension is one of the most essential aspects of the process of listening to music. A veridical computational model of perceived musical tension would be an important ingredient for many music informatics applications [27]. The present paper presents a new approach to modelling harmonic tension based on a distributed representation of chords. The starting hypothesis is that harmonic tension as perceived by human listeners is related, among other things, to the expectedness of harmonic units (chords) in their local harmonic context. We train a word2vec-type neural network to learn a vector space that captures contextual similarity and expectedness, and define a quantitative measure of harmonic tension on top of this. To assess the veridicality of the model, we compare its outputs on a number of well-defined chord classes and cadential contexts to results from pertinent empirical studies in music psychology. Statistical analysis shows that the model’s predictions conform very well with empirical evidence obtained from human listeners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://kern.ccarh.org/.

  2. 2.

    https://code.google.com/p/word2vec/.

References

  1. Arthurs, Y., Timmers, R.: Evaluating the consonance and pleasantness of triads in different musical contexts. In: Proceedings of the 3rd International Conference on Music & Emotion (ICME3), University of Jyväskylä, Department of Music, Jyväskylä (2013)

    Google Scholar 

  2. Bharucha, J.J., Stoeckig, K.: Reaction time and musical expectancy: priming of chords. J. Exp. Psychol. Human. 12, 403–410 (1986)

    Article  Google Scholar 

  3. Bigand, E., Pineau, M.: Global context effects on musical expectancy. Atten. Percept. Psychophys. 59, 1098–1107 (1997)

    Article  Google Scholar 

  4. Bigand, E., Madurell, F., Tillmann, B., Pineau, M.: Effect of global structure and temporal organization on chord processing. J. Exp. Psychol. Human. 25, 184–197 (1999)

    Article  Google Scholar 

  5. Caplin, W.E.: Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven. Oxford University Press, New York (1998)

    Google Scholar 

  6. Caplin, W.E.: The classical cadence: conceptions and misconceptions. J. Soc. Am. Music. 57, 51–118 (2004)

    Article  Google Scholar 

  7. Conklin, D.: Representation and discovery of vertical patterns in music. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445, pp. 32–42. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45722-4_5

    Chapter  Google Scholar 

  8. Cook, N.D., Fujisawa, T.X.: The psychophysics of harmony perception: harmony is a three-tone phenomenon. EMR 1, 106–126 (2006)

    Article  Google Scholar 

  9. Farbood, M.M.: A parametric, temporal model of musical tension. Music. Percept. 29, 387–428 (2012)

    Article  Google Scholar 

  10. Helmholtz, H.: Die Lehre von der Tonempfindungen als physiologische Grundlage für die Theorie der Musik, zweite edn. Friedrich Vieweg & Sohn, Braunschweig (1865)

    MATH  Google Scholar 

  11. Huang C.A., Duvenaud D., Gajos K.Z.: ChordRipple: recommending chords to help novice composers go beyond the ordinary. In: Proceedings of the 21st International Conference on Intelligent User Interfaces (IUI 2016), pp. 241–250. ACM, New York (2016)

    Google Scholar 

  12. Hutchinson, W., Knopoff, L.: The significance of the acoustic component of consonance in western triads. JMR 3, 5–22 (1979)

    Google Scholar 

  13. Ilie, G., Thompson, W.: Experiential and cognitive changes following seven minutes exposure to music and speech. Music. Percept. 28, 247–264 (2011)

    Article  Google Scholar 

  14. Johnson-Laird, P.N., Kang, O.E., Leong, Y.C.: On musical dissonance. Music. Percept. 30, 19–35 (2012)

    Article  Google Scholar 

  15. Margulis, E.H.: On Repeat: How Music Plays the Mind. University Press, Oxford (2016)

    Google Scholar 

  16. Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press, Chicago (1956)

    Google Scholar 

  17. Meyer, L.B.: Explaining Music: Essays and Explorations. University of California Press, Berkeley (1973)

    Google Scholar 

  18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26 (2013)

    Google Scholar 

  20. Parncutt, R.: Harmony: A Psychoacoustical Approach. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-74831-8

    Book  Google Scholar 

  21. Riemann, H.: Vereinfachte Harmonielehre oder die Lehre von den tonalen Funktionen der Akkorde, 2nd edn. Augener & Co., No. 9197, London (original 1893)

    Google Scholar 

  22. Roberts, L.: Consonant judgments of musical chords by musicians and untrained listeners. Acta. Acust. united Ac. 62, 163–171 (1986)

    Google Scholar 

  23. Schmuckler, M.A., Boltz, M.G.: Harmonic and rhythmic influences on musical expectancy. Percept. Psychophys. 56, 313–325 (1994)

    Article  Google Scholar 

  24. Sears, D.: The Classical Cadence as a Closing Schema: Learning, Memory, and Perception (Unpublished doctoral dissertation). McGill University, Montreal (2016)

    Google Scholar 

  25. Tillmann, B., Bigand, E.: Global context effect in normal and scrambled musical sequences. J. Exp. Psychol. Human. 27, 1185–1196 (2001)

    Article  Google Scholar 

  26. White, H.: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–838 (1980)

    Article  MathSciNet  Google Scholar 

  27. Widmer, G.: Getting closer to the essence of music: the Con Espressione Manifesto. ACM Trans. Intell. Syst. Technol. 8, Article 19 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the European Research Council (ERC) under the EUs Horizon 2020 Framework Programme (ERC Grant Agreement number 670035, project “Con Espressione”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nikrang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikrang, A., Sears, D.R.W., Widmer, G. (2018). Automatic Estimation of Harmonic Tension by Distributed Representation of Chords. In: Aramaki, M., Davies , M., Kronland-Martinet, R., Ystad, S. (eds) Music Technology with Swing. CMMR 2017. Lecture Notes in Computer Science(), vol 11265. Springer, Cham. https://doi.org/10.1007/978-3-030-01692-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01692-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01691-3

  • Online ISBN: 978-3-030-01692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics