Skip to main content

Disease Risk Assessment and GIS Technology

  • Chapter
  • First Online:
  • 828 Accesses

Abstract

This chapter describe about the early warning system (EWS) in association with disease risk analysis. Different component of EWS were analyzed for epidemiological surveillance at different scale. This chapter also analyzed the role of Earth observation (EO) in enhancing the visualization of scientific information in disease risk analysis and early warning system. A case study has also been analyzed to understand the role of remote sensing and GIS in kala-azar disease early warning system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anselin L (1995) Local indicators of spatial association—LISA. Geograph Anal 27(2):93–115

    Article  Google Scholar 

  • Assimina Z, Charilaos K, Fotoula B (2008) Leishmaniasis: an overlooked public health concern. Health Sci J 2(4):196–205

    Google Scholar 

  • Barbazan P, Yoksan S, Gonzalez J (2002) Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics. Microbes Infect 4:699–705

    Article  Google Scholar 

  • Bayer AM, Hunter GC, Gilman RH, Cornejo del Carpio JG, Naquira C, Bern C, Levy MZ (2009) Chagas disease, migration and community settlement patterns in Arequipa, Peru. PLoS Negl Trop Dis 3(12):e567

    Article  Google Scholar 

  • Bhunia GS, Chatterjee N, Kumar V, Mandal R, Das P, Kesari S (2012a) Remote sensing and GIS: tools for the prediction of epidemic for the intervention measure. In: 14th annual international conference and exhibition on geospatial international technology and application, 7–9 Feb 2012, Gurgaon, India

    Google Scholar 

  • Bhunia GS, Chatterjee N, Kumar V, Siddiqui NA, Mandal R, Das P (2012b) Delimitation of Kala-Azar risk areas in the district of Vaishali in Bihar (India) using a geo-environmental approach Memórias do Instituto Oswaldo Cruz, vol 107(5), pp 609–620

    Article  Google Scholar 

  • Bhunia GS, Kesari S, Chatterjee N, Kumar K, Das P (2013) Spatial and temporal variation and hotspot detection of Kala-Azar disease in Vaishali district (Bihar), India. BMC Infect Dis 13:64. https://doi.org/10.1186/1471-2334-13-64

  • Bhunia GS, Kesari S, Jeyaram A, Kumar V, Das P (2010a) Influence of topography on the endemicity of Kala-Azar: a study based on remote sensing and geographical information system. Geospatial Health 4(2):155–165

    Article  Google Scholar 

  • Bhunia GS, Kumar V, Kumar AJ, Das P, Kesari S (2010b) The use of remote sensing in the identification of the eco–environmental factors associated with the risk of human visceral leishmaniasis (Kala-Azar) on the Gangetic plain, in north–eastern India. Ann Trop Med Parasitol 104(1):35–53

    Article  Google Scholar 

  • Bobadilla Suarez M, Ewen JG, Groombridge JJ, Beckmann K, Shotton J, Masters N, Sainsbury AW (2017) Using qualitative disease risk analysis for Herpetofauna conservation translocations Trans Ecol Geograph Barriers Ecohealth 14(Suppl 1), 47–60. http://doi.org/10.1007/s10393-015-1086-4

    Article  Google Scholar 

  • Bouchard C, Leighton PA, Beauchamp G, Nguon S, Trudel L, Milord F, Lindsay LR, Bélanger D, Ogden NH (2013) Harvested white-tailed deer as sentinel hosts for early establishing Ixodesscapularis populations and risk from vector-borne zoonoses in southeastern Canada. J Med Entomol 50(2):384–393

    Article  Google Scholar 

  • Brownstein JS, Rosen H, Purdy D, Miller JR, Merlino M, Mostashari F, Fish D (2002) Spatial analysis of West Nile virus: rapid risk assessment of an introduced vector-borne zoonosis. Vector Borne Zoonotic Dis 2:157–164

    Article  Google Scholar 

  • Cliff AD, Hord JK (1981) Spatial processes: models and applications. Pion, London, UK

    Google Scholar 

  • Croner CM, De Cola L (2001) Visualization of disease surveillance data with geostatistics. In: Presented at UNECE (United Nations Economic Commission for Europe) work session on methodological issues involving integration of statistics and geography, Tallinn. http://www.unece.org/stats/documents/2001/09/gis/25.e.pdf

  • Dhiman RC, Yadav RS (2016) Insecticide resistance in phlebotomine sandflies in Southeast Asia with emphasis on the Indian subcontinent. Infect Dis Poverty 5:106. https://doi.org/10.1186/s40249-016-0200-3

  • Eisen L, Eisen RJ (2011) Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Ann Rev Entomol 56:41–61

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton ME (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester

    Google Scholar 

  • Frössling J, Ohlson A, Björkman C, Håkansson N, Nöremark M (2012) Application of network analysis parameters in risk-based surveillance: examples based on cattle trade data and bovine infections in Sweden. Prev Vet Med 105(3):202–208

    Article  Google Scholar 

  • Gething PW, Noor AM, Gikandi PW, Ogara EAA, Hay SI, Nixon MS, Snow RW, Atkinson PM (2006) Improving imperfect data from health management information systems in africa using space-time geostatistics. PLoS Med 3:825–831

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Analy 24(3):189–206

    Article  Google Scholar 

  • Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, Wasunna MK, Bryceson ADM (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2:494–501

    Article  Google Scholar 

  • Hay SI, Simba M, Busolo M, Noor AM, Guyatt HL, Ochola SA, Snow RW (2002) Defining and detecting malaria epidemics in the highlands of Western Kenya. Emerg Infect Dis 8:555–562

    Article  Google Scholar 

  • Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R (2008) Identification of aerobic gut bacteria from the Kala Azar Vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg 79(6):881–886

    Article  Google Scholar 

  • Hu J, Liu Y, Wimberly MC (2014) FDEOD—A software framework for downloading earth observation data. In: Proceedings of the Association of Computing Machinery Southeast Conference, Kennesaw, GA

    Google Scholar 

  • Istudor N, Ursacescu M, Sendroiu C, Radu I (2016) Theoretical framework of organizational intelligence: a managerial approach to promote renewable energy in rural economies. Energies 9(639):1–20. https://doi.org/10.3390/en9080639

    Article  Google Scholar 

  • Kaninda A, Belanger F, Lewis R, Batchassi E, Aplogan A, Yakoua Y, Paquet C (2000) Effectiveness of incidence thresholds for detection and control of meningococcal meningitis epidemics in northern Togo. Int J Epidemiol 29:933–940

    Article  Google Scholar 

  • Kesari S, Bhunia GS, Chatterjee N, Kumar V, Mandal R, Das P (2013) Appraisal of Phlebotomus argentipes habitat suitability using a remotely sensed index in the Kala-Azar endemic focus of Bihar. India Memórias Do Instituto Oswaldo Cruz 108(2):197–204. https://doi.org/10.1590/0074-0276108022013012

    Article  Google Scholar 

  • Kesari S, Bhunia GS, Kumar V, Jeyaram A, Ranjan A, Das P (2010) Study of house-level risk factors associated in the transmission of Indian Kala-Azar. Parasit Vectors 3:94. https://doi.org/10.1186/1756-3305-3-94

    Article  Google Scholar 

  • Killick-Kendrick (1983) Investigation of Phlebotomine sandflies. In: Biology of the kinetoplastide, vol 2, Lumsden WHR, Evans DA (eds) London, Academic Press

    Google Scholar 

  • Kilpatrick AM, Pape WJ (2013) – Predicting human West Nile virus infections with mosquito surveillance data. Am J Epidemiol 178(5):829–835

    Article  Google Scholar 

  • Kleinschmidt I, Bagayoko M, Clarke GPY, Craig M, Sueur DL (2000) A spatial statistical approach to malaria mapping. Int J Epidemiol 29:355–61

    Article  Google Scholar 

  • Kuhn KG (1999) Global warming and leishmaniasis in Italy. Bull. Trop. Med. Int. Hlth. 7:1–2

    Google Scholar 

  • Kumar N, Singh SP, Mondal D, Joshi A, Das P, Sundar S, Kroeger A, Hirve S, Siddiqui NA, Boelaert M (2011) How do health care providers deal with Kala-Azar in the Indian subcontinent? Indian J Med Res 134:349–355

    Google Scholar 

  • Kumar V, Shankar L, Kesari S, Bhunia GS, Dinesh DS, Mandal R, Das P (2015) Insecticide susceptibility of Phlebotomus argentipes & assessment of vector control in two districts of West Bengal, India. The Indian Journal of Medical Research 142(2):211–215. https://doi.org/10.4103/0971-5916.164260

    Article  Google Scholar 

  • Lainson R (1988) Ecological interactions in the transmission of the leishmaniases. Philos Trans Royal Soc London Ser B, Biol Sci 321(1207):389–404

    Google Scholar 

  • Lang L (1998) GIS-a proven tool for public health analysis. J Environ Health 67

    Google Scholar 

  • Medenica S, Jovanović S, Dožić I, Milicić B, Lakićević N, Rakocević B (2015) Epidemiological Surveillance of Leishmaniasis in Montenegro, 1992–2013. Srpski arhiv za celokupno lekarstvo 143(11–12):707–711

    Article  Google Scholar 

  • Medford-Davis LN, Kapur GB (2014) Preparing for effective communications during disasters: lessons from a World Health Organization quality improvement project. Int J Emerg Med 7:15. https://doi.org/10.1186/1865-1380-7-15

    Article  Google Scholar 

  • Métras R, Collins LM, White RG, Alonso S, Chevalier V, Thuranira-McKeever C, Pfeiffer DU (2011) Rift Valley fever epidemiology, surveillance, and control: what have models contributed? Vector Borne Zoonotic Dis 11(6):761–771

    Article  Google Scholar 

  • Mitchell A (2005) The ESRI guide to GIS analysis, vol 2. ESRI Press

    Google Scholar 

  • Mondal D, Singh SP, Kumar N, Joshi A, Sundar S, Das P, Hirve S, Kroeger A, Boelaert M (2009) Visceral Leishmaniasis elimination programme in India, Bangladesh, and Nepal: reshaping the case finding/case management strategy. PLoS Negl Trop Dis 3(1):e355. https://doi.org/10.1371/journal.pntd.0000355

    Article  Google Scholar 

  • Mukhopadhyay AK, Rahman SJ, Chakravarty AK (1990) Effects of flood control on immature stages of sandflies in flood prone Kala-Azar endemic villages of North Bihar, India. WHO/VBC 90:986

    Google Scholar 

  • Musa GJ, Chiang PH, Sylk T, BavleyR, Keating W, Lakew B, Tsou HC, Hoven CW (2013) Use of GIS mapping as a public health tool—from cholera to cancer. Health Serv Insights 6:111–116

    Google Scholar 

  • Napier LE (1926) An epidemiological consideration of the transmission of Kala-Azar in India. India Med Res Memoir 4:219–265

    Google Scholar 

  • Njabo KY, Cornel AJ, Sehgal RNM, Loiseau C, Buermann W, Harrigan RJ, Pollinger J, Valkiūnas G, Smith TB (2009) Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa. Malaria Journal 8:193. https://doi.org/10.1186/1475-2875-8-193

    Article  Google Scholar 

  • Ozair M, Lashari AA, Jung IH, Okosun KO (2012) Stability analysis and optimal control of a vector-borne disease with nonlinear incidence. Discr Dynam Nat Soc 2012, Article ID 595487, p 21 https://doi.org/10.1155/2012/595487

    Article  Google Scholar 

  • Ozbel Y, Sanjoba C, Alten B, Asada M, Depaquit J, Matsumoto Y, Demir S, Siyambalagoda RRMLR, Rajapakse RPVJ, Matsumoto Y (2011) Distribution and ecological aspects of sand fly (Diptera: Psychodidae) species in Sri Lanka. J Vect Ecol 36(1):S77–S86

    Article  Google Scholar 

  • Picado A, Das ML, Kumar V, Dinesh DS, Rijal S, Singh SP, Das P, Coosemans M, Boelaert M, Davies C (2010) Phlebotomus argentipes seasonal patterns in India and Nepal. J Med Entomol 47(2):283–286

    Article  Google Scholar 

  • Rajabi M (2015) Disease susceptibility mapping using spatial modeling techniques. Lund University. http://www.nateko.lu.se/sites/nateko.lu.se/files/mohammadreza-rajabi-first_year_-seminar-17-08-2015-v4.pdf

  • Reist M, Jemmi T, Stärk KDC (2012) Policy-driven development of cost-effective, risk-based surveillance strategies. Prev Vet Med 105(3):176–184

    Article  Google Scholar 

  • Riner ME, Cunningham C, Johnson A (2004) Public health education and practice using geographic information system technology. Public Health Nurs 21(1):57–65

    Article  Google Scholar 

  • Ryan KJ, Ray CG (eds) (2004) Sherris medical microbiology (4th ed). McGraw Hill ISBN 0-8385-8529-9, pp 749–754

    Google Scholar 

  • Santos-Reyes J, Beard AN (2013). Information communication technology and a systemic disaster management system model. https://pdfs.semanticscholar.org/0c00/0405-1c332b26b046a6a779377b5b21dd006e.pdf

  • Shah NH, Gupta J (2013) SEIR model and simulation for vector borne diseases. Appl Math 4:13–17

    Article  Google Scholar 

  • Singh A, Roy SP, Kumar R, Nath A (2008) Temperature and humidity play a crucial role in the development of P. argentipes. J Ecophysiol Occupation Health 8(1 & 2)

    Google Scholar 

  • Singh VP, Ranjan A, Topno RK, Verma RB, Siddique NA, Ravidas VN, Kumar N, Pandey K, Das P (2010) Estimation of under-reporting of visceral leishmaniasis cases in Bihar. India Am J Trop Med Hyg 82(1):9–11

    Article  Google Scholar 

  • Srividya A, Michael E, Palaniyandi M, Pani SP, Das PK (2002) A geostatistical analysis of the geographic distribution of lymphatic filariasis prevalence in southern India. Am J Trop Med Hyg 67:480–489

    Article  Google Scholar 

  • Sudhakar S, Srinivas T, Palit A, Kar SK, Bhattacharya SK (2006) Mapping of risk prone areas of Kala-Azar (Visceral leishmaniasis) in parts of Bihar state, India: an RS and GIS approach. J Vect Borne Dis 43:115–122

    Google Scholar 

  • Sutherst RW (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17(1):136–173. https://doi.org/10.1128/CMR.17.1.136-173.2004

    Article  Google Scholar 

  • Sutherst RW (2000) Climate change and invasive species—a conceptual framework. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, D.C, pp 211–240

    Google Scholar 

  • Swaddle JP, Calos SE (2008) Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS One 3(6):e2488

    Article  Google Scholar 

  • Thakur CP (2007) A new strategy for elimination of Kala-Azar from rural Bihar. Indian J Med Res 126:447–451

    Google Scholar 

  • Thompson PN, Etter E (2015) Epidemiological surveillance methods for vector-borne diseases. Rev Sci Tech Off Int Epiz 34(1):235–247

    Article  Google Scholar 

  • Van der Kelen P, Downs JA, Unnasch T, Stark L (2014) A risk index model for predicting eastern equine encephalitis virus transmission to horses in Florida. Appl Geogr 48:79–86

    Article  Google Scholar 

  • Wang H, Liang G (2015) Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag 11:435–448. https://doi.org/10.2147/TCRM.S51168

    Article  Google Scholar 

  • Wang J, Cao Z, Zeng DD, Wang Q, Wang X, Qian H (2014) Epidemiological analysis, detection, and comparison of space-time patterns of Beijing hand-foot-mouth disease (2008–2012). PLoS One 9(3):e92745. https://doi.org/10.1371/journal.pone.0092745

    Article  Google Scholar 

  • Wen TH, Lin NH, Chao DY, Hwang KP, Kan CC, Lin K et al (2010) Spatial-temporal patterns of dengue in areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002. Int J Infect Dis 14(4):e334–e343

    Article  Google Scholar 

  • Woodruff RE, Guest CS, Garner MG, Becker N, Lindesay J, Carvan T, Ebi K (2002) Predicting Ross river virus epidemics from regional weather data. Epidemiology 13:384–393

    Article  Google Scholar 

  • World Health Organization (WHO) (2015) Kala-Azar elimination programme: report of a WHO consultation of partners, Geneva, Switzerland, 10–11, February 2015. http://apps.who.int/iris/-bitstream/10665/185042/1/9789241509497_eng.pdf

  • World Health Organization (WHO) (1998) Life in twenty first century: a vision for all. World Health Report, World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Yoo EH (2014) Site-specific prediction of West Nile virus mosquito abundance in greater Toronto Area using generalized linear mixed models. Int J Geogr Inf Sci 28(2):296–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri Sankar Bhunia .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhunia, G.S., Shit, P.K. (2019). Disease Risk Assessment and GIS Technology. In: Geospatial Analysis of Public Health. Springer, Cham. https://doi.org/10.1007/978-3-030-01680-7_6

Download citation

Publish with us

Policies and ethics