Skip to main content

Evolutionary Computation in Blast Furnace Iron Making

  • Chapter
  • First Online:
Optimization in Industry

Part of the book series: Management and Industrial Engineering ((MINEN))

Abstract

Various methods and models are used to optimize the different aspects of blast furnace iron-making process involving the quality of hot metal, productivity, and the cost of production. Analytical models which are used to solve such problems are often not adequate to obtain the optimized results. Nowadays data-driven models are used effectively for this purpose. In this chapter, various soft computing techniques, with a special emphasis on evolutionary computation methods are presented to elaborate their implementation in different areas of blast furnace iron making. The input–output data models and simulation results are discussed with respect to various aspects of ferrous production metallurgy like sintering process, gas scheduling , prediction and process control of hot metal, temperature prediction of hot metal, silicon content in the hot metal, burden and gas distribution, carbon dioxide emission, performance of rotary kiln, coal injection, biomass injection, and many objective optimization problems, etc. The results and comparison between various models are thoroughly analyzed and a discussion regarding these data-driven models and their influence in the blast furnace iron-making process is presented in a comprehensive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The White Book of Steel, World Steel Association, 2012. ISBN 978-2-930069-67-8.

    Google Scholar 

  2. Ghosh, A., & Chatterjee, A. (2008). Iron and Steel Making Theory and Practice. Delhi: PHI Learning Private Limited.

    Google Scholar 

  3. Worldsteel Association. Resource Efficiency, http://www.worldsteel.org/en/dam/jct:1568363d.

  4. Worldsteel Association. Resource Efficiency, http://www.worldsteel.org/en/dam/jcr:37ad1117.

  5. Gugurathi, A. M., & Babu, B. V. Evolutionary computation techniques and application.

    Google Scholar 

  6. Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Berlin: Springer.

    Book  Google Scholar 

  7. Pettersson, F., Chakraborti, N., & Saxén, H. (2007). A genetic algorithm based multi objective neural net applied to noisy blast furnace data. Applied Soft Computing, 70, 387–397.

    Article  Google Scholar 

  8. Geerdes, M., Chaigneau, R., Kurunov, J., Lingiardi, O., & Ricketti, J. Modern blast furnace iron making an introduction. Delft University: IOS Press.

    Google Scholar 

  9. Midrex Technology, www.Midrex.com.

  10. Hinnela, J., Saxén, H., & Pettersson, F. (2003). Neural network model of burden layer formation dynamic in blast furnace. Industrial and Engineering Chemistry Research, 42(11), 2314–2323.

    Google Scholar 

  11. Kritzinger, H. P., & Kingsley, T. C. (2015). Modeling and optimization of a rotary kiln direct reduction process. Journal of the South African Institute of Mining and Metallurgy, 115, 419–424.

    Article  Google Scholar 

  12. Fabian, B. T. (1958). A linear programming model of integrated iron and steel production. Management Science, 4, 415–441.

    Article  Google Scholar 

  13. Omori, Y. (1987). Blast furnace phenomenon and modeling. London: Elsevier.

    Google Scholar 

  14. Muchi, I. (1967). Mathematical model of blast furnace. Transaction of Iron and Steel Institute of Japan, 7, 223.

    Google Scholar 

  15. Peacey, J. G., & Davesport, W. G. The iron blast furnace theory and practice. Pergamon International Library of Science. Robort Maxwell, M.C.

    Google Scholar 

  16. Rist, A., & Meysson, N. (1967). A dual representation of the blast furnace mass and heat balance. Journal of Metals, 19, 50–59.

    Google Scholar 

  17. Kilpinen, A. (1988). An on line model for estimating the melting zone in a blast furnace. Chemical Engineering Science, 43, 1813–1818.

    Article  Google Scholar 

  18. Nath, N. K. (2002). Simulation of gas flow in blast furnace for different burden distribution and cohesive zone shape. Material and Manufacturing Processes, 17, 671–681.

    Article  Google Scholar 

  19. Dong, X. F., Pinson, D., Zhang, S. J., Yu, A. B., & Zulli, P. (2006). Gas-powder flow in blast furnace with different shape of cohesive zone. Applied Mathematical Modeling, 30, 1293–1309.

    Article  Google Scholar 

  20. Hatano, M., & Kurita, K. A. (1992). Mathematical model of blast furnace with radial distribution of gas flow, heat transfer and reaction considered. Transaction of the Iron and Steel Institute of Japan, 22, 448–456.

    Article  Google Scholar 

  21. Zhou, Z., Zhu, H., Yu, A., Wright, B., Pinson, D., & Zulli, P. (2005). Discrete particle simulation of solid flow in a model blast furnace. ISIJ International, 45, 1828–1837.

    Article  Google Scholar 

  22. Decastro, J. A., Nogami, H., & Yagi, J. (2002). Three dimensional multiphase mathematical modelling of the based on multi-fluid model. ISIJ International, 42, 44–52.

    Article  Google Scholar 

  23. Adema, A. (2014). DEM. CFD modelling of the iron making blast furnace. TU Delft, Delft University of Technology.

    Google Scholar 

  24. Hykin, S. S. (2009). Neural networks and learning machines. Prentice-Hall; Holland, J. H (1975). Adaption in nature and artificial systems. Ann Abbor, MI: The University of Michigan Press.

    Google Scholar 

  25. Coello-Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithm for solving multi objective problems. New York: Kluwer Academic Publishers.

    Google Scholar 

  26. Miettinen, K. M. (1998). Non linear multi objective optimization. Buston, Massachusetts: Klwer Academic Publishers.

    Google Scholar 

  27. Zadeh, A. L. (1987). Fuzzy logic and fuzzy systems: Selected paper. Wiley.

    Google Scholar 

  28. Lu, Y. Z. (1996). Industrial intelligent control. New York: Wiley.

    Google Scholar 

  29. Hassoun, M. H. (1995). Fundamentals of artificial neural networks. Cambridge, MA: MIT Press.

    Google Scholar 

  30. Holland, H. J. (1992). Adaption in natural and artificial systems. Cambridge, Massachusetts, London: MIT press.

    Google Scholar 

  31. Pettersson, F., Biswas, A., Sen, P., Saxén, H., & Chakraborti, N. (2009). analyzing leaching data for low grade manganese ore using neural nets and multi objective genetic algorithms. Materials and Manufacturing Processes, 24, 320–330.

    Article  Google Scholar 

  32. Monal, D. N., Sarangi, K., Petterson, F., Sen, P. K., Saxén, H., & Chakraborti, N. (2011). Cu-Zn separation by supported liquid membrane analyzed through multi objective genetic algorithms. Hydrometallurgy, 107, 112–123.

    Article  Google Scholar 

  33. Collets, P. (2007). Genetic programming in hand book of research on nature inspired computing for economics and management. In: J.-P. Rennrd (Ed.), Idea: Hershey (pp. 59–73).

    Google Scholar 

  34. Poli, R., Langdon, W. B., & Mcphee, N. F. (2008). A field guide to genetic programming. Published via http://lulu.com (With Contributing by Koza, J. R.).

  35. Giri, B. K., Pettersson, F., Saxen, H., & Chakraborti, N. (2013). Genetic programming evolved through bi-objective algorithms applied to a blast furnace. Materials and Manufacturing Processes, 28, 776–882.

    Article  Google Scholar 

  36. Li, X. (2003). A real-coded predator-prey genetic algorithm for multi objective optimization: In: C. M. Fonseca, P. J. Fleming, E. Zitztler, K. Dev, & L. Thiele, (Eds.), EMO lecture notes in computer science, 2632 (pp. 207–221). Berlin: Springer.

    Google Scholar 

  37. Wilson, B. (2014). In J. Valadi, P. Siarry (Eds.), Application of Metaheuristics in Process Engineering, Switzerland: Springer International Publishing.

    Google Scholar 

  38. KimemeTM (2014). www.kimeme.com.

  39. Wu, S., Oliviera, D., Dat, Y., & Xu, J. (2012). Ore blending optimization model for sintering process based on characteristic of iron ores. International Journals of Minerals, Metallurgy and Metals, 19, 217–224.

    Article  Google Scholar 

  40. Umadevi, T., Karthik, P., Mohapatra, P. C., Prabhu, M., & Ranjan, M. (2013). Optimization of FeO in iron ore sintering at JSW steel limited. Iron Making and Steel Making, 30(3), 180–189.

    Google Scholar 

  41. Zhang, J., Xie, A., & Shen, F. (2007). Multi objective optimization and analysis model of sintering process based of BP network. Journals of Iron and Steel Research, 14, 1–5.

    Google Scholar 

  42. Nath, N. K., & Mitra, K. (2013). Optimization of suction pressure for iron sintering by genetic algorithm. Iron Making and Steel Making, 31(3), 199–206.

    Google Scholar 

  43. Nath, N. K., & Mitra, K. (2007). Mathematical modeling and optimization of two layer sintering process for sinter quality and fuel efficiency using genetic algorithm. Materials and Manufacturing Processes, 20(3), 335–349.

    Article  Google Scholar 

  44. Mitra, K. (2013). Evolutionary surrogate optimization of an industrial sintering process. Material and manufacturing process, 28(7), 768–775.

    Article  Google Scholar 

  45. Wang, T., Zhao, J., Sheng, C., Wang, W., & Wang, L. (2016). Multilayer encoding genetic algorithm based granular fuzzy interference for blast furnace gas scheduling. IFAC Paper Online, 49, 132–137.

    Google Scholar 

  46. Andahazy, D., Loffler, G., Winter, F., Feilmayr, C., & Burgler, T. (2005). Theoritical analysis on the injection of H2, CO2, CH4, rich gases into the blast furnace. ISIJ International, 45, 166–174.

    Google Scholar 

  47. Andahazy, D., Shaby, S., Loffler, G., Winter, F., Feilmayr, C., & Burgler, T. (2006). Governing process of gas and oil injection into the blast furnace. ISIJ International, 46, 486–502.

    Article  Google Scholar 

  48. Shaby, S., Andahazy, D., Winter, F., Feilmayr, C., & Burgler, T. (2006). Reducing ability of CO2 and H2 of Gases formed in the lower part of the blast furnace by gas and oil injection. ISIJ International, 46(7), 1006–1013.

    Article  Google Scholar 

  49. Radhakrishanan, V. R., & Mohamod, A. R. (2001). Neural networks for the identification and control of blast furnace hot metal quality. Journal of Process Control, 10, 77–85.

    Google Scholar 

  50. Chen, J. (2001). A predictive system for blast furnace by integrating a neural network with qualitative analysis. Engineering Application of Artificial Intelligence, 19, 77–85.

    Article  Google Scholar 

  51. Wang, W. (2008). Application of BP network and principal component analysis to forecasting the Si content in blast furnace hot metal. Workshop of Intelligent Information Technology Application, 3, 42–46.

    Google Scholar 

  52. Vapnic, V. N. (1995). The nature of statistical learning theory. New York, NY USA: Springer.

    Google Scholar 

  53. Chang, C. C., Lin, & C. J. Libsum (2001). A library for support vector machines.

    Google Scholar 

  54. Kronberger, G., Feilmayr, C., Kommenda, M., Winkler, S., Affezeller, M., & Bargler, T. (2009). System identification of blast furnace process with genetic programming. In IEEE, 5258751.

    Google Scholar 

  55. Guo, H., Zhu, M., Yan, B., Deng, S., Li, X., & Liu, F. (2017). Dynamic regional viscosity prediction model of blast furnace slag based on the partial least squire regression. The Minerals Metals and Materials Society, 69, 395–401.

    Article  Google Scholar 

  56. Ljung, L. (1999). System identification (p. 140). New Jercy: Prentice Hall.

    Google Scholar 

  57. Martin, R. D., Obeso, F., Machon, J., Barea, R., & Jeminez, J. (2013). Hot meatal temperature prediction in blast furnace using advance model based on fuzzy logic tools. Iron and Steel Making, 34(3), 241–247.

    Article  Google Scholar 

  58. Jeminez, J., Machon, J., deAyla, J. S., & Obeso, F. (2004). Blast furnace hot metal temperature prediction through neural networks based models. ISIJ International, 44, 573–580.

    Article  Google Scholar 

  59. Michael, A., Henson, D. E., & Seborg (1997). Nonlinear process control. New Jercy: Prentice Hall (p. 26).

    Google Scholar 

  60. Castore, M., Gandolfi, G., Palella, S., & Taspedini, G. (1972). Dynamic model for hot metal Si prediction in blast furnace control. In process development of iron practice (pp. 152–159). London, UK.

    Google Scholar 

  61. Phadke, M. S., & Wu, S. M. (1974). Identification of multi input-multi output transfer function and noise model of a blast furnace from close loop data. IEEE Transactions on Automatic Control, 19, 944–951.

    Article  Google Scholar 

  62. Phadke, M. S., & Wu, S. M. (1974). Identification of multi input-multi output transfer function and noise model of a blast furnace from close loop data. IEEE Transactions on Automatic Control, 19, 944.

    Article  Google Scholar 

  63. Unbehauen, H., & Diekmann, K. (1982). Application of MIMO identification to a blast furnace in IFSC identification and system parameter estimation. In IFSC (p. 235), WA.

    Google Scholar 

  64. Chao, Y. C., Su, C. W., & Hueug, H. P. (1986). The adaptive auto remain models for the system dynamics and prediction of blast furnace. Chemical Engineering Communications, 44, 309.

    Article  Google Scholar 

  65. Saxen, H. (1994). Short term prediction of silicon content in pig iron. Canadian Metallurgical Quarterly, 33, 319.

    Article  Google Scholar 

  66. Östermark, R., & Saxén, H. (1996). Vermax. Modeling of blast furnace process variable. European Journal of Operational Research, 90, 85.

    Article  Google Scholar 

  67. Saxén, H., & Östermark, R. (1996). State realization with exogenous variables test on blast furnace data. European Journal of Operational Research, 89, 24.

    Article  Google Scholar 

  68. Chung, Y. H., Chou, R. J., Chang-Chang, G. M., & Chen, G. L. (1986). An auto regressive model for the system dynamics of blast furnace. Journal of the Chinese Institute of Chemical Engineers, 17, 107–111.

    Google Scholar 

  69. Zeng, J. S., & Gao, C. H. (2009). Improvement of identification of furnace iron making process by outlier detection and missing value imputation. Journal of Process Control, 19, 1519–1528.

    Article  Google Scholar 

  70. Sheel, P.,& Deo, B. (1999). Production of silicon content of hot metal using fuzzy-GA regression. GECCO. In Ist Annual Conference on Genetic and Evolutionary optimization (Vol. 2, pp. 1685–1690).

    Google Scholar 

  71. Lue, S. H., Huang, J., Zeng, J. S., & Zhanyng, Q. S. (2011). Identification of the optimal control center for ballast furnace thermal state based on the Fuzzy–C-means clustering. ISIJ International, 51, 1668–1673.

    Article  Google Scholar 

  72. Jian, L., Gao, C. H., Li, L., & Zeng, S. (2008). Application of Least squire support vector machine to predict the Si content in blast furnace hot metal. ISIJ International, 48, 1659.

    Article  Google Scholar 

  73. Chen, J. (2001). A predictive system for blast furnace by integrating a neural network with qualitative analysis. Engineering Applications of Artificial Intelligence, 14, 77–85.

    Article  Google Scholar 

  74. Chen, W., Wang, B. X., & Han, H. L. (2010). Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm. Ironmaking & Steelmaking, 37, 458–463.

    Article  Google Scholar 

  75. Saxen, H., Pettersson, F., & Gunturu, K. (2007). Evolving nonlinear time series model of the hot metal silicon content in the blast furnace. Material and Manufacturing Processes, 225, 577–584.

    Article  Google Scholar 

  76. Saxén, H., & Pettersson, F. (2007). Nonlinear prediction of the hot metal silicon content in the blast furnace. ISIJ International, 47, 1732–1737.

    Article  Google Scholar 

  77. Nurkhala, A., Pettersson, F., & Saxén, H. (2011). Nonlinear modeling method applied to prediction of hot metal silicon in the iron making blast furnace. Industrial & Engineering Chemistry Research, 50, 9236–9248.

    Article  Google Scholar 

  78. Saxén, J., Saxén, H., & Toivonen, H. T. (2016). Identification of switching linear system using self-organizing models with application to silicon prediction in hot metal. Applied Soft Computing, 47, 271–280.

    Article  Google Scholar 

  79. Biswas, A. (1981). Principle of blast furnace iron making. Brisbane, Australia: Cootha Publishing House.

    Google Scholar 

  80. Omori, Y. (Ed.). (1987), Blast furnace phenomena and modeling. London: Elsevier.

    Google Scholar 

  81. Lizuka, M., Kajikawa, S., Nakatani, G., Wakmoto, K., & Matsumura, K. (1980). Nippon Kokan Tech. Rep, Overseas, 30, 13.

    Google Scholar 

  82. Ohno, J., Yashino, H., Shirakawa, Y., Tsuda, A., Watanabe, S., Hirata, T., et al. (1986). In: Proceedings of IFAC Conference in Automation in Mining, Mineral, and Metal Processing (p. 353), IFSC, Laxenberg.

    Google Scholar 

  83. Iwamura, T., Sahimura, H., Maki, Y., Kawai, T., & Asano, Y. (1982). Transactions of the Iron and Steel Institute of Japan, 22, 764.

    Article  Google Scholar 

  84. Mitra, T., & Saxén, H. (2014). Evolution of charging programs for achieving required gas temperature profile blast furnace. Materials and Manufacturing Processes, 30(4), 474–487.

    Google Scholar 

  85. Zhou, Z., Zhu, H., Yu, A., Write, B., Pinson, D., & Zull, P. (2005). Discrete particle simulation of solid flow in model blast furnace. ISIJ International, 45, 1828–1837.

    Article  Google Scholar 

  86. Natsui, S., Nogami, H., Veda, S., Kano, J., Inoue, R., & Ariyama, T. (2011). Simulation three dimensional analysis of gas solid flow in blast furnace by combining discrete element method and computational fluid dynamics. ISIJ International, 51, 41–50.

    Article  Google Scholar 

  87. Xu, J., Wu, S., Kou, M., Zhang, L., & Yu, X. (2011). Circumferential burden distribution generation at bell less top blast furnace with parallel type hoppers. Applied Mathematics Modelling, 35, 1439–1455.

    Google Scholar 

  88. Pettersson, F., Saxén, H., & Hanneia, J. (2005). A genetic algorithm evolving charging program in the iron making blast furnace. Materials and Manufacturing Processes, 20(3), 351–361.

    Article  Google Scholar 

  89. Mitra, T., & Saxén, H. (2014). Model for fast evolution of charging programs in the blast furnace. Metallurgical and Materials Transactions, 45(6), 2382–2394.

    Article  Google Scholar 

  90. Hinnela, J. (2003). Data driven modeling of burden distribution in the blast furnace. Ph.D. Thesis. Heat Engineering Laboratory, Abo Academy University.

    Google Scholar 

  91. Pettersson, F., Hinnela, J., & Saxén, H. (2003). Evolutionary neural networks modeling of blast furnace burden distribution. Materials and Manufacturing Processes, 18(3), 385–399.

    Article  Google Scholar 

  92. Mitra, T., Pettersson, F., Saxén, H., & Chakraborti, N. (2016). Blast furnace charging optimization using multi objective evolutionary and genetic algorithms. Materials and Manufacturing Processes, 32(10), 1179–1188.

    Article  Google Scholar 

  93. Mohanty, K., Mitra, T., Saxén, H., & Chakraborti, N. (2016). Multicriteria in a top gas releasing blast furnace optimize through a k-optimality based algorithm. Steel Research International, 87, 1284–1294.

    Google Scholar 

  94. Hu, C., Han, X., Li, Z., & Zhang, C. (2009). Comparison of CO2 emission between COREX and blast furnace iron making system. Journal of Environmental Sciences, 21, 116–120.

    Article  Google Scholar 

  95. Austin, P. R., Nogami, H., & Yagi, J. (1998). Prediction of blast furnace performance with top gas recycling. ISIJ International, 38, 239–245.

    Article  Google Scholar 

  96. Nogami, H., Chu, M., & Yagi, J. (2005). Numerical analysis of blast furnace operation with top gas. Rev. Material-Paris, 102–189.

    Google Scholar 

  97. Murai, R., Sato, M., & Ariyama, T. (2004). Design of innovative blast furnace for minimizing CO2 emission based on optimization of solid fuel injection and top gas recycling. ISIJ International, 44, 2168–2177.

    Article  Google Scholar 

  98. Helle, H., Helle, M., Saxén, H., & Pettersson, F. (2010). Optimization of top gas recycling condition under high oxygen enrichment in the blast furnace. ISIJ International, 50, 931–938.

    Article  Google Scholar 

  99. Wang, C., Rayman, C., & Dahl, J. J. (2009). Potential CO2 emission reduction for BF-BOF steel making based on optimize use of ferrous burden material. Green House Gas Control, 3, 29–36.

    Article  Google Scholar 

  100. Ghanbari, H., Pettersson, F., & Saxén, H. (2015). Optimal operation strategy and gas utilization in a future integrated steel plant. Chemical Engineering Research and Design, 102, 322–336.

    Article  Google Scholar 

  101. Pettersson, F., Saxén, H., & Deb, K. (2009). Genetic algorithm based multicriteria optimization of iron making in blast furnace. Materials and Manufacturing Processes, 24, 343–349.

    Article  Google Scholar 

  102. Poli, R., Langdon, W. B., & Mephee, N. F. (2008). A field guide to genetic programming. Published via http://lulu.com (With Contributing Koza, J. R.).

  103. Mitra, T., Helle, M., Pettersson, F., Saxén, H., & Chakraborti, N. (2011). Multi objective optimization of top gas recycling condition in the blast furnace by genetic algorithm. Materials and Manufacturing Processes, 26(8), 475–480.

    Article  Google Scholar 

  104. Agrawal, A., Tiwari, U., Pettersson, F., Das, S., Saxén, H., & Chakraborti, N. (2010). Analyzing blast furnace data using evolutionary neural network and multi objective genetic algorithm. Iron Making and Steel Making, 37, 353–359.

    Google Scholar 

  105. Jha, R., Sen, P. K., & Chakraborti, N. (2014). Multi objective genetic algorithm and genetic programming models for minimizing input carbon rates in a blast furnace compared with a conventional analytic approach. Steel Research International, 85(2), 219–232.

    Article  Google Scholar 

  106. Deb, K. (2001). Multi objective optimization using evolutionary algorithms. Chi Chester: Wiley.

    Google Scholar 

  107. Poles, S., Vassileva, M., & Sasaki, D. (2008). Multi objective optimization. In: J. Branke, K. Dev, K. Miettinen, & R. Slowinski, (Eds.), Multi objective optimization lecture notes in computer science (Vol. 5252, pp. 329–348). Springer.

    Google Scholar 

  108. Haywood, R., Tayler, W., Plikas, N., & Warnica, D. (2009). Enhanced problem solving, the integration of CFD and other engineering application. In 7th International Conference on CFD in the Minerals and the Process Industries, CSIRO, Melbourne, Australia.

    Google Scholar 

  109. Gasevic, D., Kaviani, N., & Hatala, M. (2007). Metamodeling in mega models, model driven engineering language and systems. In 10th International Conference (pp. 91–1005), Nashville, Tennessee.

    Google Scholar 

  110. Stander, N., & Craig, K. (2002). On the robustness of a simple domain reduction scheme for simulation based optimization. Engineering computation, 19, 431–450.

    Article  Google Scholar 

  111. Croft, T. N., Cross, M., Slone, A. K., Williams, A. F., Bennett, C. R., Blot, P., et al. (2009). CFD analysis of an induration cooler on an iron are grate kiln pelletizing process. Minerals Engineering, 22, 859–873.

    Article  Google Scholar 

  112. Mohanty, D., Chandra, A., & Chakraborti, N. (2009). Genetic algorithm based multi objective optimization of an iron making rotary kiln. Computational Materials Science, 45, 181–188.

    Article  Google Scholar 

  113. Hunty, W. P., Lee, G. K., & Price, J. T. (1991). Fundamentals of coal combustion during injection into a blast furnace. Progress in Energy and Combustion Science, 17, 373–395.

    Article  Google Scholar 

  114. Chen, C. W. (2005). Numerical analysis for the multi phase flow of pulverized coal injection inside blast furnace tuyere. Applied Mathematical Modeling, 29, 871–884.

    Article  Google Scholar 

  115. Shen, Y. S., Gua, B. Y., Yu, A. B., Austin, P. R., & Zulli, P. (2011). Three dimensional modelling of in furnace coal/coke combustion in a blast furnace. Fuel, 90, 728–738.

    Article  Google Scholar 

  116. Shen, Y. S., Yu, A. B., Austin, P. R., & Zulli, P. (2012). CFD study of the furnace effects of operating condition. Powder Technology, 223, 27–38.

    Article  Google Scholar 

  117. Lacroix, P., Dauwels, G., Dufresene, P., Godijn, R., Perini, P. G., & Stricker, K. P. (2001). High blast furnace productivity operations with low coke rates in the European Union. Metallurgical Research & Technology, 3(98), 259–268.

    Article  Google Scholar 

  118. Norgate, J., & Langberg, P. (2009). Environmental and economic aspects of charcoal use in steel making. ISIJ International, 49(4), 587–595.

    Article  Google Scholar 

  119. Wiklund, C. M., Helle, M., Saxén, H., & Pettersson, F. (2016). Economic assessment of options for biomass pretreatment and use in the blast furnace. Biomass and Bioenergy, 91, 259–270.

    Article  Google Scholar 

  120. Helle, H., Helle, M., Saxén, H., & Pettersson, F. (2009). Mathematical optimization of iron making with bio mass as auxiliary reductant in the blast furnace. ISIJ International, 49, 1316–1324.

    Article  Google Scholar 

  121. Wiklund, C. M., Helle, M., Kohl, T., Järvinen, M., & Saxen, H. (2017). Feasibility study of woody bio mass use in a steel plant through process integration. Journal of Cleaner Production, 142, 4127–4141.

    Article  Google Scholar 

  122. Chugh, T., Chakraborti, N., Sindhya, K., & Jin, Y. (2017). A data driven surrogate assisted multi objective evolutionary algorithm applied to a many objective blast furnace optimization problems. Materials and Manufacturing Processes, 32(10), 1172–1178.

    Google Scholar 

  123. Wang, H., Jin, Y., & Jansen, J. O. (2016). Data driven surrogate assisted multi objective optimization of a trauma system. IEEE Transaction on Evolutionary Computation.

    Google Scholar 

  124. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., & Sindhya, K. (2018). A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Transactions on Evolutionary Computation, 22(1), 129–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirupam Chakraboti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahanta, B.K., Chakraboti, N. (2019). Evolutionary Computation in Blast Furnace Iron Making. In: Datta, S., Davim, J. (eds) Optimization in Industry. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-01641-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01641-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01640-1

  • Online ISBN: 978-3-030-01641-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics