Skip to main content

Evolutionary Computation for Theatre Hall Acoustics

  • Chapter
  • First Online:
Optimization in Industry

Part of the book series: Management and Industrial Engineering ((MINEN))

Abstract

Architectural design is a process that considers many objectives to satisfy. In general, these objectives are conflicting with each other. On the other hand, many design parameters are associated with these conflicting objectives, too. Therefore, architectural design is described as a complex task. To handle the complexity, computational optimization methods can be employed to investigate architectural design process in detail. This paper focuses on investigating Pareto -front solutions for theatre hall design using multi-objective evolutionary algorithms . To formulate the theatre hall acoustic design problem, we consider three objectives. Two objectives are minimization of both reverberation time, and total initial cost whereas the third objective is the maximization of seating capacity. In addition, several designs and acoustical performance constraints are defined. To tackle this problem, a multi-objective self-adaptive differential evolution algorithm (JDEMO) is proposed and compared with a well-known non-dominated sorting genetic algorithm -II (NSGA-II) from the literature. Computational results show that the proposed JDEMO algorithm achieves competitive results when compared to the NSGA-II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiang, W., & Shu, Y. (2003). Acoustical design of stages with large plane surfaces in rectangular recital halls. Applied Acoustics, 64, 863–884.

    Article  Google Scholar 

  2. Martin, R., & Arana, M. (2006). Predicted and experimental results of acoustic parameters in the new Symphony Hall in Pamplona. Spain, Applied Acoustics, 67, 1–14.

    Article  Google Scholar 

  3. Cerda, S., Gimenez, A., Romero, J., Cibrian, R., & Miralles, J. L. (2009). Room acoustical parameters: A factor analysis approach. Applied Acoustics, 70, 97–109.

    Article  Google Scholar 

  4. Akama, T., Suzuki, H., & Omoto, A. (2010). Distribution of selected monaural acoustical parameters in concert halls. Applied Acoustics, 71, 564–577.

    Article  Google Scholar 

  5. Brothanek, M., Jandak, V., Jiricek, O., & Svec, P. (2012). Monaural and binaural parameters of Rudolfinum concert halls in Prague. Applied Acoustics, 73, 1201–1208.

    Article  Google Scholar 

  6. Sabine, W. C., & Egan, M. D. (1994). Collected papers on acoustics. The Journal of the Acoustical Society of America, 95(6), 3679–3680.

    Article  Google Scholar 

  7. Sato, S., Hayashi, T., Takizawa, A., Tani, A., Kawamura, H., & Ando, Y. (2004). Acoustic design of theatres applying genetic algorithms. Journal of Temporal Design in Architecture and the Environment, 4(1).

    Google Scholar 

  8. Sato, S., Otori, K., Takizawa, A., Sakai, H., Ando, Y., & Kawamura, H. (2002). Applying genetic algorithms to the optimum design of a concert hall. Journal of Sound and Vibration, 258, 517–526.

    Article  Google Scholar 

  9. Bassuet, A., & Dellatorre, L. (2014). Computational and optimization design in geometric acoustics. Building Acoustics, 21(1), 75–85.

    Article  Google Scholar 

  10. Cubukcuoglu, C., Kirimtat, A., Tasgetiren, M. F., Suganthan, P., & Pan, Q.-K. (2016). Multi-objective harmony search algorithm for layout design in theatre hall acoustics. In 2016 IEEE Congress on Evolutionary Computation (CEC) (Vol. 2016, pp. 2280–2287).

    Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

    Article  Google Scholar 

  12. Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In Eurogen (Vol. 2001, pp. 95–100).

    Google Scholar 

  13. Storn, R., & Price, K. (1995). Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, Berkeley, CA, Technical Report TR-95–012. [2] Storn, R. & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. The Journal of Global Optimization, 11(4), 341–359.

    Google Scholar 

  14. Price, K., Storn, R., & Lampinen, J. (2005). Differential evolution: A practical approach toglobal optimization. Berlin: Springer.

    MATH  Google Scholar 

  15. Mullick, S. S., Suganthan, P. N., Das, S. (2016). Recent advances in differential evolution—an updated survey. Swarm and Evolutionary Computation.

    Google Scholar 

  16. Brest, J., Greiner, S., Boskovic, B., Mernik, M., & ˇZumer, V. (2006). Self adapting control parameters in differential evolution: a comparative study on numerical Benchmark problems. IEEE Transactions on Evolutionary Computation, 10(6), 646–657.

    Article  Google Scholar 

  17. Brest, J. (2009). Constrained real-parameter optimization with e-self-adaptive differential evolution. In E. Mezura-Montes (Ed.), Constraint-handling in evolutionary optimization. Studies in computational intelligence series (Vol. 198). Springer.

    Google Scholar 

  18. Zamuda, A., Brest, J., Boskovic, B., & Zumer, V. (2007). Differential evolution for multiobjective optimization with self-adaptation. In The 2007 IEEE Congress on Evolutionary Computation CEC2007 (pp. 3617–3624).

    Google Scholar 

  19. Robic, T., & Filipic, B. (2005). DEMO: Differential evolution for multiobjective optimization. In Proceedings of the Third International Conference on Evolutionary Multi-criterion Optimization—EMO 2005, ser. Lecture Notes in Computer Science (Vol. 3410, pp. 520–533). Springer.

    Google Scholar 

  20. Tusar, T., & Filipic, B. (2007). Differential evolution versus genetic algorithms in multiobjective optimization, in Proceedings of the Fourth International Conference on Evolutionary Multi-criterion Optimization—EMO 2007, ser. Lecture Notes in Computer Science (Vol. 4403, pp. 257–271). Springer.

    Google Scholar 

  21. Sabine, W. C. (1900). Reverberation. The American Architect.

    Google Scholar 

  22. Aretz, Marc, & Orlowski, Raf. (2009). Sound strength and reverberation time in small concert halls. Applied Acoustics, 70(8), 1099–1110.

    Article  Google Scholar 

  23. Parkin, P. H.; Scholes, W. E., & Derbyshire, A. G. (1952). The reverberation times of ten British concert halls (Vol. 2, Number 3, pp. 97–100(4)). Acta Acustica united with Acustica.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Tasgetiren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cubukcuoglu, C., Kirimtat, A., Ekici, B., Tasgetiren, F., Suganthan, P.N. (2019). Evolutionary Computation for Theatre Hall Acoustics. In: Datta, S., Davim, J. (eds) Optimization in Industry. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-01641-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01641-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01640-1

  • Online ISBN: 978-3-030-01641-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics