Skip to main content

Optimisation in Friction Stir Welding: Modelling, Monitoring and Design

  • Chapter
  • First Online:
Optimization in Industry

Part of the book series: Management and Industrial Engineering ((MINEN))

  • 951 Accesses

Abstract

The friction stir welding process involves a highly complex microstructure evolution. This makes it very difficult to derive intricate relationships among operating conditions , in-process variables and characteristics of welds, and utilise the relationships into modelling, monitoring and optimal design of operating conditions . In this research, a heuristic optimisation paradigm Reduced Space Searching Algorithm, combined with soft-computing-based modelling and data analysis techniques, is employed to solve the problem. The research investigates an aluminium alloy AA5083 and includes three facets of research: first, developing a weld quality indicator that can provide a reliable indication of ‘as-welded’ defects for an online monitoring system; second, generating accurate and interpretable prediction models for both internal process attributes and post-weld properties; third, finding optimal operating conditions to enhance welding productivity, process reliability and cost efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Templesmith, P., & Dawes, C. J. (1991). G.B. Patent Application No. 9125978.8, December 1991.

    Google Scholar 

  2. Nandan, R., DebRoy, T., & Bhadeshia, H. K. D. H. (2008). Recent advances in friction stir welding—process, weldment structure and properties. Progress in Materials Science, 53, 980–1023.

    Article  Google Scholar 

  3. Chakraborti, N. (2014). Critical assessment 3: The unique contributions of multi-objective evolutionary and genetic algorithms in materials research. Materials Science and Technology, 30(11), 1259–1262.

    Article  Google Scholar 

  4. Paszkowicz, W. (2013). Genetic algorithms, a nature-inspired tool: A survey of applications in materials science and related fields: Part II. Materials and Manufacturing Processes, 28(7), 708–725.

    Article  Google Scholar 

  5. Datta, S., Zhang, Q., Sultana, N., & Mahfouf, M. (2013). Optimal design of titanium alloys for prosthetic applications using a multi-objective based genetic algorithm. Materials and Manufacturing Processes, 28(7), 741–745.

    Article  Google Scholar 

  6. Zhang, Q., Mahfouf, M., Yates, J. R., Pinna, C., Panoutsos, G., Boumaiza, S., et al. (2011). Modeling and optimal design of machining-induced residual stresses in aluminium alloys using a fast hierarchical multiobjective optimization algorithm. Materials and Manufacturing Processes, 26(3), 508–520.

    Article  Google Scholar 

  7. Zhang, Q., & Mahfouf, M. (2009). A modified PSO with a dynamically varying population and its application to the multi-objective optimal design of alloy steels. In Proceedings of the 2009 IEEE Cong. on ‘Evolutionary Computation’, Trondheim, Norway (pp. 3241–3248). IEEE.

    Google Scholar 

  8. Tansel, I. N., Demetgul, M., Okuyucu, H., & Yapici, A. (2010). Optimizations of friction stir welding of aluminum alloy by using genetically optimized neural network. International Journal of Advanced Manufacturing Technology, 48, 95–101.

    Article  Google Scholar 

  9. Roshan, S. B., Jooibari, M. B., Teimouri, R., Asgharzadeh-Ahmadi, G., Falahati-Naghibi, M., & Sohrabpoor, H. (2013). Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm. International Journal of Advanced Manufacturing Technology, 69, 1803–1818.

    Article  Google Scholar 

  10. Parida, B., & Pal, S. (2015). Fuzzy assisted grey Taguchi approach for optimisation of multiple weld quality properties in friction stir welding process. Science and Technology of Welding and Joining, 20(1), 35–41.

    Article  Google Scholar 

  11. Tutum, C. C., & Hattel, J. H. (2010). Optimization of process parameters in friction stir welding based on residual stress analysis: A feasibility study. Science and Technology of Welding and Joining, 15(5), 369–377.

    Article  Google Scholar 

  12. Tutum, C. C., Deb, K., & Hattel, J. H. (2013). Multi-criteria optimization in friction stir welding using a thermal model with prescribed material flow. Materials and Manufacturing Processes, 28(7), 816–822.

    Article  Google Scholar 

  13. Shojaeefard, M. H., Behnagh, R. A., Akbari, M., Givi, M. K. B., & Farhani, F. (2013). Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Materials and Design, 44, 190–198.

    Article  Google Scholar 

  14. Zhang, Q., & Mahfouf, M. (2010). A nature-inspired multi-objective optimisation strategy based on a new reduced space searching algorithm for the design of alloy steels. Engineering Applications of Artificial Intelligence, 23(5), 660–675.

    Article  Google Scholar 

  15. Zhang, Q., & Mahfouf, M. (2007). A new reduced space searching algorithm (RSSA) and its application in optimal design of alloy steels. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore (pp. 1815–1822).

    Google Scholar 

  16. Zhang, Q., Mahfouf, M., Panoutsos, G., Beamish, K., & Norris, I. (2012a). Knowledge discovery for friction stir welding via data driven approaches: Part 1—correlation analyses of in-process variables and weld quality. Science and Technology of Welding and Joining, 17(8), 672–680.

    Article  Google Scholar 

  17. Zhang, Q., Mahfouf, M., Panoutsos, G., Beamish, K., & Norris, I. (2012b). Knowledge discovery for friction stir welding via data driven approaches part 2—multiobjective modelling using fuzzy rule based systems. Science and Technology of Welding and Joining, 17(8), 681–693.

    Article  Google Scholar 

  18. Zhang, Q., Mahfouf, M., Panoutsos, G., Beamish, K., & Liu, X. (2015). Multiobjective optimal design of friction stir welding considering quality and cost issues. Science and Technology of Welding and Joining, 20(7), 607–615.

    Article  Google Scholar 

  19. El-Danaf, E. A., El-Rayes, M. M., & Soliman, M. S. (2010). Friction stir processing: An effective technique to refine grain structure and enhance ductility. Materials and Design, 31, 1231–1236.

    Article  Google Scholar 

  20. Thomas, W. M., & Gittos, M. F. (1999). Development of friction stir tools for the welding of thick (25 mm) aluminium alloys. TWI Members Report 694/1999, TWI, UK.

    Google Scholar 

  21. Beamish, K. A., & Russell, M. J. (2010). Relationship between the features on an FSW tool and weld microstructure. In Proceedings of the 8th International Symposium on ‘Friction Stir Welding’, Timmendorfer Strand, Germany.

    Google Scholar 

  22. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1–2), 1–78.

    Article  Google Scholar 

  23. Jin, Y., Olhofer, M., & Sendhoff, B. (2001). Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how? In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1042–1049). ACM: San Francisco, USA.

    Google Scholar 

  24. Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-objective genetic algorithm and its applications to flowshop scheduling. Computers & Industrial Engineering, 30(4), 957–968.

    Article  Google Scholar 

  25. Gaafer, A. M., Mahmoud, T. S., & Mansour, E. H. (2010). Microstructural and mechanical characteristics of AA7020-O Al plates joined by friction stir welding. Materials Science and Engineering A, 527, 7424–7429.

    Article  Google Scholar 

  26. Boldsaikhana, E., Corwinb, E. M., Logarb, A. M., & Arbegast, W. J. (2011). The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding. Applied Soft Computing, 11, 4839–4846.

    Article  Google Scholar 

  27. Lee, B., & Tarng, Y. S. (1999). Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current. International Journal of Advanced Manufacturing Technology, 15(4), 238–243.

    Article  Google Scholar 

  28. Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics, 3, 28–44.

    Article  MathSciNet  Google Scholar 

  29. Zhang, Q., & Mahfouf, M. (2008). Mamdani-type fuzzy modelling via hierarchical clustering and multi-objective particle swarm optimisation (FM-HCPSO). International Journal of Computational Intelligence Research, 4(4), 314–328.

    Article  Google Scholar 

  30. Zhang, Q., & Mahfouf, M. (2011). A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels. Applied Soft Computing, 11(2), 2419–2443.

    Article  Google Scholar 

  31. Hashimoto, T., Jyogan, S., Nakata, K., Kim, Y. G., & Ushio, M. (1999). FSW joints of high strength aluminum alloy. In Proceedings of the First International Symposium on Friction Stir Welding, Thousand Oaks, CA.

    Google Scholar 

  32. Ma, Z. Y., Mishra, R. S., & Mahoney, M. W. (2002). Superplastic deformation behaviour of friction stir processed 7075Al alloy. Acta Materialia, 50(17), 4419–4430.

    Article  Google Scholar 

  33. Biallas, G., Braun, R., Donne, C. D., Staniek, G., & Kaysser, W. A. (1999). Mechanical properties and corrosion behavior of friction stir welds. In Proceedings of the First International Symposium on Friction Stir Welding, Thousand Oaks, CA.

    Google Scholar 

  34. Zadeh, L. A. (1972). A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of Cybernetics, 2, 4–34.

    Article  MathSciNet  Google Scholar 

  35. Chu, T. C., Ranson, W. F., & Sutton, M. A. (1985). Applications of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics, 25(3), 232–244.

    Article  Google Scholar 

  36. Humphreys, F. J., & Hotherly, M. (1995). Recrystallization and related annealing phenomena. New York, USA: Pergamon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Q., Liu, X. (2019). Optimisation in Friction Stir Welding: Modelling, Monitoring and Design. In: Datta, S., Davim, J. (eds) Optimization in Industry. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-01641-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01641-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01640-1

  • Online ISBN: 978-3-030-01641-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics