Skip to main content

Part of the book series: Frontiers in the History of Science ((FRHIS))

  • 690 Accesses

Abstract

In the previous chapters, I have shown that the question about the solvability of the problem of the indefinite and definite quadratures of the circle, the ellipse, and the hyperbola was a source of studies and debates among geometers from the second half of the Seventeenth Century. More particularly, I have chosen to study one episode within precise temporal bounds (1667–1676). The example I chose to analyze revolves around the claim made by James Gregory, in his Vera circuli et hyperbolae quadratura, regarding the impossibility of solving the quadrature of the circle in an exact way, and the criticism to which this claim was later exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For examples of this episode’s treatment in the early Twentieth Century, see Zeuthen (1903), Dehn and Hellinger (1943) and Dehn and Hellinger (1939).

  2. 2.

    Archimedes was ill at ease with computations involving infinite series, thus he used the more rigorous method of exhaustion. Several centuries later, Viète studied the same theorem, and hinted at the possibility of using the geometric progression as a shorter method of proof (Viète 1593, p. 29). Like Van Heuraet’s proof, the non-finite portion of Viète’s solution only occurs during the heuristic step of analysis, and the fact that the infinite sum reaches a finite value allows the synthetic portion of the solution to be carried out by a “classical” constructivist approach.

  3. 3.

    GPU, p. 3.

  4. 4.

    “And if the geometer, after the proper application of this method according to the properties of the figure, cannot find any solution, he must resort to convergent series, whose limit is the unknown figure or another one, in a given ratio with this one.” See Malet (1996, p. 226), for a further discussion.

  5. 5.

    Cf., among several manuscripts, VII6, p. 504: “nam cum linearum curvarum, aut spatiorum ipsis conclusorum magnitudo quaeritur (…) neque aequationes neque curvae Cartesianae nos expedire possunt; opusque est novi plane generis aequationibus, constructionibus curvisque novis; denique et calculo novo, nondum a quoquam tradito, cujus si nihil aliud saltem specimina quaedam, mira satis, jam nunc dare possem.”

  6. 6.

    See also Debuiche (2013).

  7. 7.

    Leibniz (2011, pp. 8–9): “Archimedes quidem Polygona Circulo inscribens & circumscribens, quoniam major est inscriptis, & minor circumscriptis, modum ostendit, exhibendi limites intra quos circul[u]s cadat, sive exhibendi appropinquationes: esse scilicet rationem circumferentiae ad diametrum, majorem quam 3 ad 1, seu quam 21 ad 7, & minorem quam 22 ad 7. Hanc Methodum alii sunt prosecuti, Ptolemaeus, Vieta, Metius, sed maxime Ludolphus Coloniensis, qui ostendit esse circumferentiam ad diametrum, ut 3.14159265358979323846&c. ad 1,  00000000000000000000. Verum hujusmodi Appropinquationes, etsi in Geometria practica utiles, nihil tamen exhibent, quod menti satisfaciat, avidae veritatis, nisi progressio talium numerorum in infinitum continuandorum reperiatur.”

  8. 8.

    Leibniz (2011, p. 10): “Et licet uno numero summa ejus seriei exprimi non possit, et series in infinitum producatur, quoniam tamen una lege progressionis constat, tota satis mente percipitur. Nam siquidem circulus non est quadrato commensurabilis, non potest uno numero exprimi, sed in rationalibus necessario per seriem exhiberi debet; quemadmodum & Diagonalis quadrati, & sectio extrema & media ratione facta, quam aliqui divinam vocant, aliaeque multae quantitates, quae sunt irrationales.”

  9. 9.

    Cf. AII2, p. 252.

  10. 10.

    The fact that this procedure could not lead to true knowledge was stressed by Stevin: “Encore qu’il nous fust possible, de soubstraire par action, plusieurs cent mille fois la moindre grandeur de la majeure, & le continuer plusieurs milliers d’années, toutefois (estant les deux nombres proposez incommensurables) l’on travailleiroit eternellement, demeurant toujours ignorant, de ce qui encore à la fin en pourroit encore avenir. Cette manière donc de cognition n’est pas légitime, ainsi position de l’impossible, afin d’ainsi aucunement declairer, ce qui consiste veritablement en la Nature …” (Stevin 1958, Vol. 2, p. 723).

  11. 11.

    Wallis (2014, p. 426).

  12. 12.

    A similar view might have influenced Newton, as shown in Blåsjö (2017, pp. 56–57).

  13. 13.

    See also Jesseph (1999, pp. 37 and 38).

  14. 14.

    Wallis (1685, p. 316).

  15. 15.

    The terms in bold represent the terms obtained by successive interpolations.

  16. 16.

    Wallis (1685, p. 316).

  17. 17.

    Cf. Wallis to Leibniz, 6/01/1698 or 1699 (LSG, IV, p. 57).

  18. 18.

    Cf. Lützen (2014).

  19. 19.

    LSG, IV, p. 38: “Quodsi supponatur hoc numerus n, numerus fractus, surdus, vel utcumque arretos, comminiscendae sunt novae extractionum methodi casibus hujusmodi congruae. Quippe (quod ego saepe moneo) in omnibus operationibus Resolutoriis (quales sunt Subtractio, Divisio, Extractio radicum, Aequationum solutio, Interpolatio etc.) semper pervenitur ad id quod stricto sensu fieri non potest, sed quod utcumque designetur quasi-factum (ut sunt − 1, \(\frac {3}{2}\), \(\sqrt {2}\) etc). Adeoque continue procedetur ad alios aliosque gradus…seu Inexplicabilitatis, in infinitum, ut nunquam desitura sit materia ultra ultraque procedendi, volentibus id aggredi.”

  20. 20.

    One example that Wallis had in mind was probably that of Cardano and Bombelli: cf. Gavagna (2014, pp. 178–179).

  21. 21.

    Wallis (2004, p. 162).

  22. 22.

    Wallis (1685, pp. 264–267).

  23. 23.

    AVI4, 124, p. 518.

  24. 24.

    AVI4, 124, p. 520: “Interdum etiam operatio actu ipso facienda vel pro tempore vel omnino est impossibilis, saltem in nostris characteribus etsi construendo exhiberi possit aut a natura jam exhibita sit. Ita impossibile est subtrahi cum nihil adest, et tamen hoc in natura repraesentatur, cum quis plus debet, quam habet in bonis. Item numerum integrum primitivum impossibile est actu dividi per alium; unde fit fractio, quae repraesentat divisionem esse faciendam, re quae isto numero designatur divisa in partes ad eam divisionem exhibendam aptiores. Eodem modo oriuntur quantitates incommensurabiles, seu radices surdae ubi extractio non habet locum.” See Leibniz (2018, pp. 98ff.) for a French translation.

  25. 25.

    AVI, 4, 124, p. 522: “Reales vero licet incommensurabiles quantitates possunt in natura exhiberi: eaeque sunt vel Algebraicae vel Transcendentes. Algebraicae cum inveniuntur extractione radicis certi gradus. At Transcendentes cum gradus aequationis aut est incertus, aut non est enuntiabilis. Et ad Transcendentes pertinent Logarithmi. Et varii sunt modi Quantitatem Transcendentem exprimendi, tum ad instar Logarithmorum, tum certis operationibus quae supponuntur in infinitum continuatae, eae finities actu ipso praestitae quantitati quaesitae quantumlibet accedere debent, unde oriuntur appropinquationes.”

  26. 26.

    AVI, 4, 271, p. 1448: “Nam \(\sqrt {-1}\) aliquam notionem involvit, licet ea non possit exhiberi, et si quis eam circulo exhibere volet, inveniet circulum illum a recta quae ad hoc requiritur non attingi. Multum tamen interest inter quaestiones quae insolubiles sunt ob radices imaginarias, et quae [in]solubiles sunt ob absurditatem. Ut si quis quaerat numerum, qui in se ductus faciat 9: et ad 5 additus faciat etiam 9; talis numerus implicat contradictionem, debet enim simul esse 3 et 4, seu 3 et 4 debent esse aequales pars toti. Verum si quis numerum quaerat talem cujus quadratum additum ad 9, faciat idem quod numeri triplum. Is quidem nunquam ostendet totum esse majus sua parte, tali numero admisso, sed tamen et illud ostendet, talem numerum non posse designari.” (English translation in Leibniz 1984, p. 21).

  27. 27.

    Cf. also AVI4, 124, p. 521; cf. AVI4, 271, p. 1448.

  28. 28.

    For a further discussion, see Cortese (2016).

  29. 29.

    AVI4, 124, p. 520: “Et quaedam extractiones tales sunt, ut radices illae surdae nec in natura rerum extent, tunc dicuntur imaginariae …utile tamen est eam perinde considerari ad realem, quia radices imaginariae computandae cum realibus; ut integer numerus radicum alicujus aequationis habeatur; aliaque multa de ea utilia possint determinari.” A similar argument can be found in Girard’s Invention nouvelle en l’Algebre: “Donc il se faut resouvenir d’observer tousjours cela: on pourroit dire à quoy sert ces solutions qui sont impossibles, je respond pour trois choses, pour la certitude de la reigle generale, & qu’il ny a point d’autre solutions, & pour son utilité”(Girard 1629, p. 47; also quoted in Gavagna 2014, p. 186).

  30. 30.

    Let us recall, for instance, Gauss’s polemical remarks against the common habit of calling certain numbers or roots “impossible” when they are not (logically) impossible at all. According to Gauss, this is bad terminology because complex numbers are not logically impossible, unlike, say, “rectilinear equilateral right-angle triangles”: “If someone would say a rectilinear equilateral right triangle is impossible, there will be nobody to disagree. But, if he intended to consider such an impossible triangle as a new species of triangle and to apply to it other qualities of triangles, would anyone refrain from laughing? That would be playing with words, or, rather, misusing them” (in Detlefsen 2008, pp. 112–113).

  31. 31.

    A discussion of impossibility proofs in the Nineteenth Century can be found in Lützen (2009).

  32. 32.

    Especially for the impossibility of solving the quintic equation and for the case of geometric constructions, a long discussion can be found in Vuillemin (1963, Chapters 2–4).

  33. 33.

    Crippa (2014), especially the Introduction.

  34. 34.

    Heeffer (2008, p. 149), with smaller modifications.

References

  • Blåsjö, Viktor. 2017. Transcendental curves in the Leibnizian calculus. Amsterdam: Elsevier.

    Google Scholar 

  • Cortese, João. 2016. When two points coincide, or are at an infinitely small distance: some aspects of the relation between the works of Leibniz, Pascal (and Desargues). In Für unser Glück oder das Glück anderer: Vorträge des X. Internationalen Leibniz-Kongresses, vol. 4. Ed. Wenchao Li, 165–178. Hildesheim: Olms.

    Google Scholar 

  • Crippa, Davide. 2014. Impossibility results: from geometry to analysis. Université Paris Diderot: Phd Dissertation.

    Google Scholar 

  • Dehn, Max and Hellinger, Ernst. 1939. On James Gregory’s “Vera quadratura”. In The James Gregory tercentenary memorial volume. Ed. Herbert W. Turnbull, 468–478. Edinburgh: Royal Society of Edinburgh.

    Google Scholar 

  • Dehn, Max and Hellinger Ernerst. 1943. Certain mathematical achievements of James Gregory. In The American Mathematical Monthly. 50(3): 149–163.

    Article  MathSciNet  Google Scholar 

  • Debuiche, Valérie. 2013. L’expression Leibnizienne et ses modèles mathématiques. Journal of the History of Philosophy 51(3): 409–459.

    Article  Google Scholar 

  • Detlefsen, Michael. 2008. Interview with Michael Detlefsen. In Philosophy of Mathematics. 5 Questions. Eds. Vincent F. Hendricks and Hannes Leitgeb. Copenhagen: Automatic Press.

    Google Scholar 

  • Gavagna, Veronica. 2014. Radices Sophisticae, Racines Imaginaires: The Origins of Complex Numbers in the Late Renaissance. In The art of science. From perspective drawings to Quantum randomness. Eds. Rossella Lupacchini, Annarita Angelini, 165–190. Dordrecht Heidelberg New York London: Springer.

    Google Scholar 

  • Girard, Albert. 1629. Invention nouvelle en l’algebre. Amsterdam: Guillaume Iansson Blaeuw.

    Google Scholar 

  • Heeffer, Albrecht. 2008. The Emergence of Symbolic Algebra as a Shift in Predominant Models. Foundations of science, 13(2): 149–161.

    Article  MathSciNet  Google Scholar 

  • Jesseph, Douglas. 1999. Squaring the Circle: the War between Hobbers and Wallis. Chicago and London: University of Chicago Press.

    MATH  Google Scholar 

  • Leibniz, Gottfried Wilhelm. 1984. Philosophical essays. Eds. Roger Ariew, Daniel Garber. Indianapolis & Cambridge: Hackett Publishing Company.

    Google Scholar 

  • Leibniz, Gottfried Wilhelm. 2011. Gottfried Wilhelm Leibniz: Die mathematischen Zeitschriftenartikel. Eds. Hans-Jürgen Hess, and Malte-Ludof Babin. Hildesheim, Zürich, New York: Georg Olms Verlag.

    Google Scholar 

  • Leibniz, Gottfried Wilhelm. 2018. Ecrits sur la mathesis universalis. Ed. David Rabouin. Paris: Vrin.

    Google Scholar 

  • Lützen, Jesper. 2009. Why was Wantzel overlooked for a century? The changing importance of an impossibility result. Historia Mathematica. 36: 374–394.

    Article  MathSciNet  Google Scholar 

  • Lützen, Jesper. 2014. 17th century arguments for the impossibility of the indefinite and the definite quadrature of the circle. Revue d’histoire des mathématiques. 20: 211–251.

    MATH  Google Scholar 

  • Malet, Antoni. 1996. From Indivisibles to Infinitesimals: Studies on Seventeenth-Century Mathematizations of Infinitely Small Quantities. Barcelona: Universitat Autonoma de Barcelona.

    MATH  Google Scholar 

  • Stevin, Simon. 1958. The principal works of Simon Stevin. Ed. D. J. Struik. Amsterdam: Swets & Zeitlinger.

    MATH  Google Scholar 

  • Viète François. 1593. Variorum de rebus mathematicis responsorum Liber VIII. Tour: Mettayer.

    Google Scholar 

  • Vuillemin Jules. 1963. La philosophie de l’algèbre: t. I: Recherches sur quelques concepts et méthodes de l’algèbre moderne. Paris: Epimethée.

    Google Scholar 

  • Wallis, John. 1685. A treatise of algebra both historical and practical shewing the original, progress, and advancement thereof, from time to time; and by what steps it hath attained to the height at which now it is. London.

    Google Scholar 

  • Wallis, John. 2004. The arithmetic of infinitesimals. Ed., transl. Jacqueline Stedall. Dordrecht Heidelberg New York London: Springer.

    Google Scholar 

  • Wallis, John. 2014. The Correspondence of John Wallis (1616-1703). Volume IV. 1672-April 1675. Eds. Philip Beeley, Cristoph Scriba. Oxford: Oxford University Press.

    Google Scholar 

  • Zeuthen, H. Georg. 1903. Geschichte der Mathematik im XVI. and XVII. Jahrhundert. transl. R. Meyer. Leipzig: Teubner.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crippa, D. (2019). Conclusion. In: The Impossibility of Squaring the Circle in the 17th Century. Frontiers in the History of Science. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-01638-8_4

Download citation

Publish with us

Policies and ethics