Skip to main content

Towards a Universal Nuclear Structure Model

  • Conference paper
  • First Online:
  • 256 Accesses

Abstract

We present part of our recent developments of a microscopic effective model for a consistent description of both bulk and single-particle properties of nuclei.

Pier Francesco Bortignon has deceased.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Three-body forces have been shown to be necessary as well for a good description of nuclear phenomenology such as the saturation density and energy. Within approaches based on density functional theory, it is customary to approximate a three body force by a two-body density dependent force.

  2. 2.

    The projectors \(\mathcal {Q}\) and \(\mathcal {P}\) cover the full model space: \(\mathcal {Q}+\mathcal {P}=1\) and \(\mathcal {Q}\mathcal {P}=0\); and all the projectors fulfill the usual conditions: \(\mathcal {P}^2=\mathcal {P}\), \(\mathcal {Q}^2=\mathcal {Q}\) and \(\mathcal {Q}_i^2=\mathcal {Q}_i\).

References

  1. Special issue dedicated to the memory of Gerald E Brown (1926–2013). Nucl. Phys. A 928, 9 (2014)

    Google Scholar 

  2. S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, K. Murano, H. Nemura, K. Sasaki, Prog. Theor. Exp. Phys. 2012(1), 01A105 (2012)

    Google Scholar 

  3. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, 2004)

    Google Scholar 

  4. B.S. Hu, F.R. Xu, Q. Wu, Y.Z. Ma, Z.H. Sun, Phys. Rev. C 95, 034321 (2017)

    Article  ADS  Google Scholar 

  5. Y. Blumenfeld, T. Nilsson, P.V. Duppen, Phys. Scr. 2013(T152), 014023 (2013)

    Google Scholar 

  6. X. Roca-Maza, G. Colò, H. Sagawa, Phys. Rev. C 86, 031306 (2012)

    Article  ADS  Google Scholar 

  7. G. Colò, L. Cao, N.V. Giai, L. Capelli, Comput. Phys. Commun. 184(1), 142 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Bohr, B. Mottelson, Nuclear Structure. No. Vol. I & II in Nuclear Structure (World Scientific, 1998)

    Google Scholar 

  9. P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances. Contemporary concepts in physics (Taylor & Francis, 1998)

    Google Scholar 

  10. M. Harakeh, A. Woude, Giant Resonances: Fundamental High-frequency Modes of Nuclear Excitation. (Oxford Science Publications, Oxford University Press, 2001)

    Google Scholar 

  11. G. Colò, N. Van Giai, P.F. Bortignon, R.A. Broglia, Phys. Rev. C 50, 1496 (1994)

    Article  ADS  Google Scholar 

  12. S. Yoshida, Progress Theoret. Phys. Suppl. 7475, 142–156 1 Jan (1983). https://doi.org/10.1143/PTPS.74.142

  13. X. Roca-Maza, Y.F. Niu, G. Colò, P.F. Bortignon, J. Phys. G: Nucl. Part. Phys. 44(4), 044001

    Google Scholar 

  14. S.E. Agbemava, A.V. Afanasjev, D. Ray, P. Ring, Phys. Rev. C 89, 054320 (2014)

    Article  ADS  Google Scholar 

  15. X. Roca-Maza, X. Viñas, M. Centelles, P. Ring, P. Schuck, Phys. Rev. C 84, 054309 (2011)

    Article  ADS  Google Scholar 

  16. M. Baldo, C. Maieron, P. Schuck, X. Vias, Nucl. Phys. A 736(3), 241 (2004)

    Article  ADS  Google Scholar 

  17. M. Baldo, Nuclear Methods and the Nuclear Equation of State (World Scientific, 2011)

    Google Scholar 

  18. F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)

    Article  ADS  Google Scholar 

  19. H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  20. K. Langanke, G. Martínez-Pinedo, B. Müller, H.T. Janka, A. Marek, W.R. Hix, A. Juodagalvis, J.M. Sampaio, Phys. Rev. Lett. 100, 011101 (2008)

    Article  ADS  Google Scholar 

  21. Y.F. Niu, Z.M. Niu, G. Colò, E. Vigezzi, Phys. Rev. Lett. 114, 142501 (2015)

    Article  ADS  Google Scholar 

  22. Z.Y. Xu, S. Nishimura, G. Lorusso, F. Browne, P. Doornenbal, G. Gey, H.S. Jung, Z. Li, M. Niikura, P.A. Söderström, T. Sumikama, J. Taprogge, Z. Vajta, H. Watanabe, J. Wu, A. Yagi, K. Yoshinaga, H. Baba, S. Franchoo, T. Isobe, P.R. John, I. Kojouharov, S. Kubono, N. Kurz, I. Matea, K. Matsui, D. Mengoni, P. Morfouace, D.R. Napoli, F. Naqvi, H. Nishibata, A. Odahara, E. Şahin, H. Sakurai, H. Schaffner, I.G. Stefan, D. Suzuki, R. Taniuchi, V. Werner, Phys. Rev. Lett. 113, 032505 (2014)

    Article  ADS  Google Scholar 

  23. Y. Niu, Z. Niu, G. Colò, E. Vigezzi, AIP Conf. Proc. 1681(1), 050010 (2015)

    Google Scholar 

  24. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  25. K. Langanke, G. Martínez-Pinedo, Rev. Mod. Phys. 75, 819 (2003)

    Article  ADS  Google Scholar 

  26. The Hans Bethe Centennial Volume 1906–2006. Phys. Rep. 442(1), 237 (2007)

    Google Scholar 

  27. V.I. Tselyaev, Phys. Rev. C 88, 054301 (2013)

    Article  ADS  Google Scholar 

  28. M. Brenna, G. Colò, X. Roca-Maza, Phys. Rev. C 90, 044316 (2014)

    Article  ADS  Google Scholar 

  29. C.J. Yang, M. Grasso, X. Roca-Maza, G. Colò, K. Moghrabi, Phys. Rev. C 94, 034311 (2016)

    Article  ADS  Google Scholar 

  30. D. Gambacurta, M. Grasso, J. Engel, Phys. Rev. C 92, 034303 (2015)

    Article  ADS  Google Scholar 

  31. Y.F. Niu, G. Colò, E. Vigezzi, C.L. Bai, H. Sagawa, Phys. Rev. C 94, 064328 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement No. 654002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Roca-Maza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roca-Maza, X., Bortignon, P.F., Colò, G., Niu, Y.F., Vigezzi, E. (2018). Towards a Universal Nuclear Structure Model. In: Bortignon, P., Lodato, G., Meroni, E., Paris, M., Perini, L., Vicini, A. (eds) Toward a Science Campus in Milan. CDIP 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-01629-6_20

Download citation

Publish with us

Policies and ethics