Skip to main content

Mean-Field Limits of Particles in Interaction with Quantized Radiation Fields

  • Conference paper
  • First Online:
Book cover Macroscopic Limits of Quantum Systems (MaLiQS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 270))

Included in the following conference series:

Abstract

We report on a novel strategy to derive mean-field limits of quantum mechanical systems in which a large number of particles weakly couple to a second-quantized radiation field. The technique combines the method of counting and the coherent state approach to study the growth of the correlations among the particles and in the radiation field. As an instructional example, we derive the Schrödinger–Klein–Gordon system of equations from the Nelson model with ultraviolet cutoff and possibly massless scalar field. In particular, we prove the convergence of the reduced density matrices (of the nonrelativistic particles and the field bosons) associated with the exact time evolution to the projectors onto the solutions of the Schrödinger–Klein–Gordon equations in trace norm. Furthermore, we derive explicit bounds on the rate of convergence of the one-particle reduced density matrix of the nonrelativistic particles in Sobolev norm.

Dedicated to Herbert Spohn on the occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These approaches usually embed the N particle states of \(\mathcal {H}_p^{(N)}\) in a bosonic Fock space for the particles \(\mathcal {F}_p\) and consider the Hilbert space \(\mathcal {F}_p \otimes \mathcal {F}\).

  2. 2.

    For the sake of clarity, we want to stress that only the number of the nonrelativistic particles is fixed while field bosons are created and destroyed during the time evolution.

  3. 3.

    Note that \(\Psi _N^{(n)}\) is symmetric in the variables \(k_1, \ldots k_n\). For notational convenience, we will use the shorthand notation \(\Psi _N^{(n)}(X_N,K_n) = \Psi _N^{(n)}(x_1, \ldots , x_N, k_1, \ldots k_n)\).

  4. 4.

    Here, \(\hat{k}_j\) means that \(k_j\) is left out in the argument of the function.

  5. 5.

    We use \(\mathcal {FT}[\Phi ](k,t) = (2 \pi )^{-3/2} \int _{\mathbb {R}^3} d^3x \, e^{-ikx} \Phi (x,t)\) to denote the Fourier transform of \(\Phi (x,t)\) and \(\left( \kappa * \Phi \right) (x,t) = \int d^3k \, e^{ikx} \tilde{\kappa }(k) \mathcal {FT}[\Phi ](k,t)\).

  6. 6.

    Here, \(W^{-1}(\sqrt{N} \alpha _0) = W(- \sqrt{N} \alpha _0)\) is the inverse of the unitary Weyl operator \(W(\sqrt{N} \alpha _0)\), see Sect. 9.

  7. 7.

    To ease the presentation, we have chosen for given t the scaling parameter N large enough such that \(0 \le \beta (t) \le 1\) and \(0 \le \beta _2(t) \le 1\) (see Sects. 8.2 and 8.3).

  8. 8.

    For the precise definition of the initial data, we refer to [2, (I.3) and Theorem 3].

  9. 9.

    One should note that the high frequency modes of the radiation field do not interact with the nonrelativistic particles and evolve according to the free dynamics.

  10. 10.

    Occasionally, we use the bra–ket notation \(p_j^{\varphi _t} = | \varphi _t(x_j) \rangle \langle \varphi _t(x_j) | = | \varphi _t \rangle \langle \varphi _t |_j\).

  11. 11.

    This is a simple consequence of \(W(\sqrt{N} \alpha _t)\) being unitary and \(W^*(\sqrt{N} \alpha _t) a(k) = a(k) W^*(\sqrt{N} \alpha _t) + \sqrt{N} W^*(\sqrt{N} \alpha _t) \alpha _t(k)\), see (129).

  12. 12.

    We sometimes apply the shorthand notation \(\beta (t) = \beta (\Psi _{N,t},\varphi _t,\alpha _t)\).

  13. 13.

    More information is given for instance in [12, p. 9].

References

  1. Ammari, Z., Falconi, M.: Bohr’s correspondence principle for the renormalized nelson model. SIAM J. Math. Anal. 49(6), 5031–5095 (2017). arXiv:1602.03212 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Falconi, M.: Classical limit of the Nelson model with cutoff. J. Math. Phys. 54(1), 012303 (2013). arXiv:1205.4367 (2012)

  3. Frank, R.L., Schlein, B.: Dynamics of a strongly coupled polaron. Lett. Math. Phys. 104, 911–929 (2014). arXiv:1311.5814 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frank, R.L., Gang, Z.: Derivation of an effective evolution equation for a strongly coupled polaron. Anal. PDE 10(2), 379–422 (2017). arXiv:1505.03059 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ginibre, J., Nironi, F., Velo, G.: Partially classical limit of the Nelson model. Ann. H. Poincaré 7, 21–43 (2006). arXiv:math-ph/0411046 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Griesemer, M.: On the dynamics of polarons in the strong-coupling limit. Rev. Math. Phys. 29(10), 1750030 (2017). arXiv:1612.00395 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Leopold, N., Pickl, P.: Derivation of the Maxwell-Schrödinger Equations from the Pauli-Fierz Hamiltonian (2016). arXiv:1609.01545

  8. Teufel, S.: Effective N-body dynamics for the massless Nelson Model and adiabatic decoupling without spectral gap. Ann. H. Poincaré 3, 939–965 (2002). arXiv:math-ph/0203046 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms: Introduction to Quantum Electrodynamics. John Wiley and Sons, Inc. (1997). ISBN 978-0-471-18433-1

    Google Scholar 

  10. Falconi, M.: Classical limit of the Nelson model, Ph.D. thesis (2012). http://user.math.uzh.ch/falconi/other/phd_thesis.pdf

  11. Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97, 151–164 (2011). arXiv:0907.4464 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009). arXiv:0711.3087 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Matulevičius, V.: Maxwell’s Equations as Mean Field Equations, Master thesis (2011). http://www.mathematik.uni-muenchen.de/%7Ebohmmech/theses/Matulevicius_Vytautas_MA.pdf

  14. Nelson, E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5(9), 1190–1197 (1964)

    Article  MathSciNet  Google Scholar 

  15. Spohn, H.: Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cambridge (2004). ISBN 0-521-83697-2

    Google Scholar 

  16. Michelangeli, A.: Equivalent definitions of asymptotic 100% BEC. Nuovo Cimento Sec. B. 123, 181–192 (2008)

    Google Scholar 

  17. Pecher, H.: Some new well-posedness results for the Klein-Gordon-Schrödinger system. Differ. Integral Equ. 25(1–2), 117–142 (2012). arXiv:1106.2116 (2011)

  18. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, Inc., New York (1975). ISBN 978-0-12-585002-5

    Google Scholar 

  19. Mitrouskas, D., Petrat, S., Pickl, P.: Bogoliubov corrections and trace norm convergence for the Hartree dynamics (2016). arXiv:1609.06264

  20. Anapolitanos, I., Hott, M.: A simple proof of convergence to the Hartree dynamics in Sobolev trace norms. J. Math. Phys. 57, 122108 (2016). arXiv:1608.01192 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Anapolitanos, I., Hott, M., Hundertmark, D.: Derivation of the Hartree equation for compound Bose gases in the mean field limit. Rev. Math. Phys. 29, 1750022 (2017). arXiv:1702.00827 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boßmann, L.: Derivation of the 1d NLS equation from the 3d quantum many-body dynamics of strongly confined bosons (2018). arXiv:1803.11011

  23. Boßmann, L., Teufel, S.: Derivation of the 1d Gross-Pitaevskii equation from the 3d quantum many-body dynamics of strongly confined bosons (2018). arXiv:1803.11026

  24. Jeblick, M., Pickl, P.: Derivation of the time dependent two dimensional focusing NLS equation (2017). arXiv:1707.06523

  25. Jeblick, M., Pickl, P.: Derivation of the time dependent Gross-Pitaesvkii equation for a class of non purely positive potentials (2018). arXiv:1801.04799

  26. Jeblick, M., Leopold, N., Pickl, P.: Derivation of the Time Dependent Gross-Pitaevskii Equation in Two Dimensions (2016). arXiv:1608.05326

  27. von Keler, J., Teufel, S.: The NLS Limit for Bosons in a Quantum Waveguide. Ann. H. Poincaré 17, 3321–3360 (2016). arXiv:1510.03243 (2015)

  28. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298, 101–139 (2010). arXiv:0907.4313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lührmann, J.: Mean-field quantum dynamics with magnetic fields. J. Math. Phys. 53, 022105 (2012). arXiv:1202.1065

    Article  MathSciNet  MATH  Google Scholar 

  30. Michelangeli, A., Olgiati, A.: Mean-field quantum dynamics for a mixture of Bose-Einstein condensates. Anal. Math. Phys. 7(4), 377–416 (2017). arXiv:1603.02435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Michelangeli, A., Olgiati, A.: Gross-Pitaevskii non-linear dynamics for pseudo-spinor condensates. J. Nonlinear Math. Phys. 24, 426–464 (2017). arXiv:1704.00150

    Article  MathSciNet  MATH  Google Scholar 

  32. Olgiati, A.: Remarks on the derivation of Gross-Pitaevskii equation with magnetic Laplacian. In: Advances in Quantum Mechanics. Springer INdAM Ser. 18, pp. 257–266. Springer, Cham (2017). arXiv:1709.04841

    Chapter  Google Scholar 

  33. Pickl, P.: Derivation of the time dependent Gross-Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140, 76–89 (2010). arXiv:0907.4466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pickl, P.: Derivation of the time dependent Gross-Pitaevskii equation with external fields. Rev. Math. Phys. 27, 1550003 (2015). arXiv:1001.4894 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics. SpringerBriefs in Mathematical Physics Cambridge, Cambridge (2016). arXiv:1502.02498 (2015). ISBN 978-3-319-24898-1

  36. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems I and II. Commun. Math. Phys. 66(1), 37–76 (1979); 68(1), 45–68 (1979)

    Google Scholar 

  37. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  Google Scholar 

  38. Ben Arous, G., Kirkpatrick, K., Schlein, B.: A central limit theorem in many-body quantum dynamics. Commun. Math. Phys. 321(2), 371–417 (2013). arXiv:1111.6999 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the gross-pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2015). arXiv:1208.0373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Boccato, C., Cenatiempo, S., Schlein, B.: Quantum many-body fluctuations around nonlinear Schrödinger dynamics. Ann. H. Poincaré 18(1), 113–191 (2017). arXiv:1509.03837 (2015)

    Article  MATH  Google Scholar 

  41. Brennecke, C., Schlein, B.: Gross-Pitaevskii dynamics for Bose-Einstein condensates (2017). arXiv:1702.05625

  42. Brennecke, C., Nam, P.T., Napiórkowski, M., Schlein, B.: Fluctuations of N-particle quantum dynamics around the nonlinear Schrödinger equation (2017). arXiv:1710.09743

  43. Buchholz, S., Saffirio, C., Schlein, B.: Multivariate central limit theorem in quantum dynamics. J. Stat. Phys. 154(1–2), 113–152 (2014). arXiv:1309.1702 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen, L., Lee, J. O., Schlein, B.: Rate of convergence towards hartree dynamics. J. Stat. Phys. 144(4), 872–903 (2011). arXiv:1103.0948

    Article  MathSciNet  MATH  Google Scholar 

  45. Michelangeli, A., Schlein, B.: Dynamical collapse of boson stars. Commun. Math. Phys. 311(3), 645–687 (2012). arXiv:1005.3135

    Article  MathSciNet  MATH  Google Scholar 

  46. Lieb, E.H., Thomas, L.E.: Exact ground state energy of the strong-coupling polaron. Commun. Math. Phys. 183(3), 511–519 (1997); Erratum: ibid. 188(2), 499–500 (1997). arXiv:cond-mat/9512112 (1995)

  47. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766–2788 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  48. Leopold, N.: Effective Evolution Equations from Quantum Mechanics, Ph.D. thesis (2018). https://edoc.ub.uni-muenchen.de/21926/

Download references

Acknowledgements

We would like to thank Dirk André Deckert, Marco Falconi and David Mitrouskas for helpful discussions. N.L. gratefully acknowledges financial support by the Cusanuswerk and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 694227). The article appeared in slightly different form in one of the author’s (N.L.) Ph.D. thesis [48].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Leopold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leopold, N., Pickl, P. (2018). Mean-Field Limits of Particles in Interaction with Quantized Radiation Fields. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds) Macroscopic Limits of Quantum Systems. MaLiQS 2017. Springer Proceedings in Mathematics & Statistics, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-01602-9_9

Download citation

Publish with us

Policies and ethics