Skip to main content

The Localization Dichotomy for Gapped Periodic Systems and Its Relevance for Macroscopic Transport

  • Conference paper
  • First Online:
Macroscopic Limits of Quantum Systems (MaLiQS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 270))

Included in the following conference series:

  • 330 Accesses

Abstract

We review recent results concerning the localization of gapped periodic systems of independent fermions, as, e.g., electrons in Chern and Quantum Hall insulators. We show that there is a “localization dichotomy” which shows some analogies with phase transitions in Statistical Mechanics: either there exists a system of exponentially localized composite Wannier functions for the Fermi projector, or any possible system of composite Wannier functions yields a diverging expectation value for the squared position operator. This fact is largely model-independent, covering both tight-binding and continuous models. The results are discussed with emphasis on the main ideas and the broader context, avoiding most of the technical details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The analogous claim for spin transport does not hold in general, since the vanishing of spin torque response is a necessary condition to obtain the equality of spin conductance and spin conductivity for two-dimensional systems, see [14] and references therein.

  2. 2.

    An exception is provided by the well-known Landau Hamiltonian. Notice, however, that if a periodic background potential is included in the model, one is generically back to the absolutely continuous setting.

  3. 3.

    We use Hartree atomic units, and moreover we reabsorb the reciprocal of the speed of light 1 / c and the sign of the charge carriers in the definition of the function \(A_{\Gamma }\).

  4. 4.

    We carefully avoid the use of the word “lattice”, since the latter has a different meaning in physics and in mathematics. In particular, a honeycomb or a triangular structure is not a lattice in the mathematical sense (i.e., a discrete subgroup of \((\mathbb {R}^d, +)\) with maximal rank). As far as the Bravais lattice \(\Gamma \) is concerned, no ambiguity raises, since it is a lattice in both senses.

  5. 5.

    It is easy to check that, for every lattice \(\Gamma \subset \mathbb {R}^d\), one has \(|Y| |\mathbb {B}| = (2\pi )^d\).

  6. 6.

    To be precise, one should introduce the Hilbert space

    $$ \mathcal {H}_{\tau } = \left\{ \Phi \in L^2{}_{\mathrm {loc}}(\mathbb {R}^d, \ell ^2(F)) : \Phi _{\mathbf {k}+ \lambda } = \tau _{\lambda } \Phi _{\mathbf {k}} \text { for a.e. } \mathbf {k}\in \mathbb {R}^d, \forall \lambda \in \Gamma ^* \right\} . $$

    Then the transform \(\mathcal {U}\), defined by (4.2), extends to a unitary operator from \(\ell ^2(\mathcal {C})\) to \(\mathcal {H}_{\tau }\), and formula (4.4) holds true for every \(\Phi \in \mathcal {H}_{\tau }\). The subtle point is that the components of an element of \( \ell ^2(F) \simeq \mathbb {C}^N\) are intrinsic, while the components of an element of \( \ell ^2(Y) \simeq \mathbb {C}^N\) change according to the choice of the periodicity cell. Not all the \(\mathbb {C}^N\)s are equal, some are more equal than others.

  7. 7.

    To agree with the physics literature, we use the notation \(H_{\mathbf {k}}\), \(P_{\mathbf {k}}\) and \(u_{n,\mathbf {k}}\) although in mathematics the subscript usually refers to labels varying in a discrete set, and clearly \(\mathbf {k}\in \mathbb {R}^d/\Gamma ^* \simeq \mathbb {T}^d\) varies in a continuum set.

  8. 8.

    The normalization here differs from the one used in [28] but agrees with the one used in [24], which is also the most common convention among solid-state and computational physicists. The latter is more convenient when a numerical grid in \(\mathbf {k}\)-space is considered, which becomes finer and finer in the thermodynamic limit.

References

  1. Aizenman, M., Warzel, S.: Random Operators. Graduate Studies in Mathematics, vol. 168. Spinger, Berlin (2015)

    Google Scholar 

  2. Bestwick, A.J., Fox, E.J., Kou, X., Pan, L., Wang, K.L., Goldhaber-Gordon, D.: Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015)

    Google Scholar 

  3. Brouder, Ch., Panati, G., Calandra, M., Mourougane, Ch., Marzari, N.: Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98, 046402 (2007)

    Google Scholar 

  4. Cancès, É., Levitt, A., Panati, G., Stoltz, G.: Robust determination of maximally-localized Wannier functions. Phys. Rev. B 95, 075114 (2017)

    Google Scholar 

  5. Chang, C.Z. et al.: High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473 (2015)

    Article  Google Scholar 

  6. Cornean, H.D., Herbst, I., Nenciu, G.: On the construction of composite Wannier functions. Ann. Henri Poincaré 17, 3361–3398 (2016)

    Article  MathSciNet  Google Scholar 

  7. Fruchart, M., Carpentier, D., Gawedzki, K.: Parallel transport and band theory in crystals. EPL 106, 60002 (2014)

    Article  Google Scholar 

  8. Fiorenza, D., Monaco, D., Panati, G.: Construction of real-valued localized composite Wannier functions for insulators. Ann. Henri Poincaré 17, 63–97 (2016)

    Article  MathSciNet  Google Scholar 

  9. Haldane, F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2017 (1988)

    Article  Google Scholar 

  10. Hang, F., Lin, F.H.: Topology of Sobolev mappings II. Acta Math. 191, 55–107 (2003)

    Article  MathSciNet  Google Scholar 

  11. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  Google Scholar 

  12. Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)

    Article  Google Scholar 

  13. Hövermann, F., Spohn, H., Teufel, S.: Semiclassical limit for the Schrödinger equation with a short scale periodic potential. Commun. Math. Phys. 215, 609–629 (2001)

    Article  MathSciNet  Google Scholar 

  14. Marcelli, G.: A Mathematical Analysis of Spin and Charge Transport in Topological Insulators, Ph.D. thesis in Mathematics. La Sapienza Università di Roma, Rome (2017)

    Google Scholar 

  15. Marzari, N., Vanderbilt, D.: Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997)

    Article  Google Scholar 

  16. Monaco, D., Panati, G.: Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry. Acta App. Math. 137, 185–203 (2015)

    Article  MathSciNet  Google Scholar 

  17. Monaco, D., Panati, G., Pisante, A., Teufel, S.: The localization dichotomy for gapped periodic quantum systems. arXiv:1612.09557

  18. Monaco, D., Panati, G., Pisante, A., Teufel, S.: Optimal decay of Wannier functions in Chern and quantum Hall insulators. Commun. Math. Phys. 359, 61–100 (2018)

    Article  MathSciNet  Google Scholar 

  19. Nenciu, G.: Existence of the exponentially localised Wannier functions. Commun. Math. Phys. 91, 81–85 (1983)

    Article  MathSciNet  Google Scholar 

  20. Nenciu, G.: Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians. Rev. Mod. Phys. 63, 91–127 (1991)

    Article  MathSciNet  Google Scholar 

  21. Panati, G.: Triviality of Bloch and Bloch-Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)

    Article  MathSciNet  Google Scholar 

  22. Panati, G., Spohn, H., Teufel, S.: Space-adiabatic perturbation theory in quantum dynamics. Phys. Rev. Lett. 88, 250405 (2002)

    Google Scholar 

  23. Panati, G., Spohn, H., Teufel, S.: Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7, 145–204 (2003)

    Google Scholar 

  24. Panati, G., Spohn, H., Teufel, S.: Effective dynamics for Bloch electrons: Peierls substitution and beyond. Commun. Math. Phys. 242, 547–578 (2003)

    Article  MathSciNet  Google Scholar 

  25. Panati, G., Spohn, H., Teufel, S.: Motion of electrons in adiabatically perturbed periodic structures. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin (2006)

    Google Scholar 

  26. Panati, G., Spohn, H., Teufel, S.: The time-dependent Born-Oppenheimer approximation. Math. Model. Numer. Anal. 41, 297–314 (2007)

    Article  MathSciNet  Google Scholar 

  27. Panati, G., Sparber, Ch., Teufel, S.: Geometric currents in piezoelectricity. Arch. Rat. Mech. Anal. 191, 387–422 (2009)

    Article  MathSciNet  Google Scholar 

  28. Panati, G., Pisante, A.: Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions. Commun. Math. Phys. 322, 835–875 (2013)

    Article  MathSciNet  Google Scholar 

  29. Pulvirenti, M., Simonella, S.: Propagation of chaos and effective equations in kinetic theory: a brief survey. Math. Mech. Complex Syst. 4, 255–274 (2016)

    Article  MathSciNet  Google Scholar 

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. IV: Analysis of Operators. Academic Press, New York (1978)

    Google Scholar 

  31. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Chapter  Google Scholar 

  32. Spohn, H., Teufel, S.: Adiabatic decoupling and time-dependent Born-Oppenheimer theory. Commun. Math. Phys. 224, 113–132 (2001)

    Article  MathSciNet  Google Scholar 

  33. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Springer, Berlin (2003)

    Google Scholar 

  34. Thonhauser, T., Vanderbilt, D.: Insulator/Chern-insulator transition in the Haldane model. Phys. Rev. B 74, 235111 (2006)

    Google Scholar 

  35. Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)

    Article  Google Scholar 

  36. Thouless, D.J.: Wannier functions for magnetic sub-bands. J. Phys. C 17, L325–L327 (1984)

    Article  MathSciNet  Google Scholar 

  37. Zak, J.: Magnetic translation group. Phys. Rev. 134, A1602 (1964)

    Article  Google Scholar 

  38. Zak, J.: Identities for Landau level orbitals. Europhys. Lett. 17, 443 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

I am indebted to Herbert Spohn for his precious guidance in my early scientific steps. The opportunity to work with him has been invaluable to me. This survey would not have been possible without the fruitful collaboration with many colleagues, including (in chronological order) S. Teufel, Ch. Brouder, N. Marzari, A. Pisante, D. Fiorenza, D. Monaco, É. Cancès, A. Levitt, and G. Stolz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Panati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panati, G. (2018). The Localization Dichotomy for Gapped Periodic Systems and Its Relevance for Macroscopic Transport. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds) Macroscopic Limits of Quantum Systems. MaLiQS 2017. Springer Proceedings in Mathematics & Statistics, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-01602-9_11

Download citation

Publish with us

Policies and ethics