Skip to main content

Quantitative Limit Theorems for Local Functionals of Arithmetic Random Waves

  • Conference paper
  • First Online:
Computation and Combinatorics in Dynamics, Stochastics and Control (Abelsymposium 2016)

Part of the book series: Abel Symposia ((ABEL,volume 13))

Included in the following conference series:

Abstract

We consider Gaussian Laplace eigenfunctions on the two-dimensional flat torus (arithmetic random waves), and provide explicit Berry-Esseen bounds in the 1-Wasserstein distance for the normal and non-normal high-energy approximation of the associated Leray measures and total nodal lengths, respectively. Our results provide substantial extensions (as well as alternative proofs) of findings by Oravecz et al. (Ann Inst Fourier (Grenoble) 58(1):299–335, 2008), Krishnapur et al. (Ann Math 177(2):699–737, 2013), and Marinucci et al. (Geom Funct Anal 26(3):926–960, 2016). Our techniques involve Wiener-Itô chaos expansions, integration by parts, as well as some novel estimates on residual terms arising in the chaotic decomposition of geometric quantities that can implicitly be expressed in terms of the coarea formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From now on, ⇒ denotes weak-∗ convergence of measures and the uniform measure on \(\mathbb S^1\).

  2. 2.

    Indeed, each one of the four cubes composing \(\hat {Q}_0\) is such that its boundary contains the point x 0 = (0, 0), and the singularity in the sense of [15, Definition 6.3] follows by the continuity of trigonometric functions.

References

  1. Abramovitz, M., Stegun, I.-A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. United States Department of Commerce, National Bureau of Standards (NBS), Washington, DC (1964)

    Google Scholar 

  2. Berry, M.V.: Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature. J. Phys. A 35, 3025–3038 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bombieri E., Bourgain, J.: A problem on sums of two squares. Int. Math. Res. Not. 11, 3343–3407 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Cheng, S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51(1), 43–55 (1976)

    Article  MathSciNet  Google Scholar 

  5. Dalmao, F., Nourdin, I., Peccati, G., Rossi, M.: Phase singularities in complex arithmetic random waves. Preprint (2016). ArXiv 1608.05631

    Google Scholar 

  6. Döbler, C.: New developments in Stein’s method with applications. Ph.D. Thesis, Ruhr-Universität Bochum (2012)

    Google Scholar 

  7. Döbler, C.: The Stein equation beyond the support with applications. In preparation (2018+)

    Google Scholar 

  8. Erdös, P., Hall, R.-R.: On the angular distribution of Gaussian integers with fixed norm. Discrete Math. 200(1–3), 87–94 (1999)

    Article  MathSciNet  Google Scholar 

  9. Geman, D., Horowitz, J.: Local times for real and random functions. Duke Math. J. 43(4), 809–828 (1976)

    Article  MathSciNet  Google Scholar 

  10. Hardy, G.H., Wright, E.-M.: An Introduction to the Theory of Numbers, 5th edn. The Clarendon Press/Oxford University Press, New York (1979)

    MATH  Google Scholar 

  11. Krishnapur, M., Kurlberg, P., Wigman, I.: Nodal length fluctuations for arithmetic random waves. Ann. Math. 177(2), 699–737 (2013)

    Article  MathSciNet  Google Scholar 

  12. Kurlberg, P., Wigman, I.: On probability measures arising from lattice points on circles. Math. Ann. (2015, in press). ArXiv: 1501.01995

    Google Scholar 

  13. Marinucci, D., Peccati, G., Rossi, M., Wigman, I.: Non-universality of nodal length distribution for arithmetic random waves. Geom. Funct. Anal. 26(3), 926–960 (2016)

    Article  MathSciNet  Google Scholar 

  14. Nourdin, I., Peccati, G.: Normal approximations with Malliavin calculus. From Stein’s method to universality. Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  15. Oravecz, F., Rudnick, Z., Wigman, I.: The Leray measure of nodal sets for random eigenfunctions on the torus. Ann. Inst. Fourier (Grenoble) 58(1), 299–335 (2008)

    Article  MathSciNet  Google Scholar 

  16. Rudnick, Z., Wigman, I.: On the volume of nodal sets for eigenfunctions of the Laplacian on the torus. Ann. Henri Poincaré. 9(1), 109–130 (2008)

    Article  MathSciNet  Google Scholar 

  17. Wigman, I.: Fluctuations of the nodal length of random spherical harmonics. Commun. Math. Phys. 298(3), 787–831 (2010)

    Article  MathSciNet  Google Scholar 

  18. Wigman, I.: On the nodal lines of random and deterministic Laplace eigenfunctions. In: Spectral Geometry. Proceedings of Symposia in Pure Mathematics, vol. 84, pp. 285–297. American Mathematical Society, Providence (2012)

    Google Scholar 

  19. Yau, S.T.: Survey on partial differential equations in differential geometry. Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 3–71. Princeton University Press, Princeton (1982)

    Google Scholar 

Download references

Acknowledgements

We thank Ch. Döbler for useful discussions (in particular, for pointing out the relevance of [6]), as well as two Referees for several useful remarks. The research leading to this work has been supported by the grant F1R-MTH-PUL-15STAR (STARS) at the University of Luxembourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Peccati .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof (Lemma 3 )

From [13, Lemma 3.4], we have that the chaotic expansion of \(\mathscr Z_n^{\,\,\varepsilon }\) is

$$\displaystyle \begin{aligned} \mathscr Z_n^{\,\,\varepsilon} = \sum_{q=0}^{+\infty} \mathscr Z_n^{\,\,\varepsilon}[2q] = \sum_{q=0}^{+\infty} \frac{\beta^\varepsilon_{2q}}{(2q)!} \int_{\mathbb T} H_{2q}(T_n(x))\,dx, \end{aligned} $$
(79)

where H 2q denotes the 2q-th Hermite polynomial, and

$$\displaystyle \begin{aligned} \beta^\varepsilon_{0} = \frac{1}{2\varepsilon}\int_{-\varepsilon}^\varepsilon \phi(t)\,dt,\qquad \beta^\varepsilon_{2q} = -\frac{1}{\varepsilon} \phi(\varepsilon) H_{2q-1}(\varepsilon),\ q\ge 1,\end{aligned} $$
(80)

ϕ still denoting the Gaussian density. Taking the limit for ε going to 0 in (80) we obtain the collection of coefficients (37), related to the (formal) Hermite expansion of the Dirac mass δ 0. Note that

$$\displaystyle \begin{aligned} \sum_{q=1}^{+\infty} \frac{(\beta_{2q})^2}{(2q)!} \int_{\mathbb T} r_n(x)^{2q}\,dx = \frac{1}{2\pi} \int_{\mathbb T} \left( \frac{1}{\sqrt{1-r_n(x)^2}} -1 \right)\,dx < +\infty,\end{aligned} $$
(81)

since the collection {(β 2q)2∕(2q)!}q coincides with the sequence of Taylor coefficients of the function \(x\mapsto 1/(2\pi \sqrt {1 - x^2})\) around zero; thanks to Lemma 5.3 in [15] we have the finiteness of the integral. Therefore the series

$$\displaystyle \begin{aligned} \sum_{q=0}^{+\infty} \frac{\beta_{2q}}{(2q)!} \int_{\mathbb T} H_{2q}(T_n(x))\,dx,\end{aligned} $$

is a well-defined random variable in \(L^2(\mathbb P)\), its variance being the series on the l.h.s. of (81). Moreover, from [1, 22.14.16] and (81)

$$\displaystyle \begin{aligned} \sum_{q=1}^{+\infty} \frac{(\beta_{2q}^\varepsilon - \beta_{2q})^2}{(2q)!} \int_{\mathbb T} r_n(x)^{2q}\,dx\le 2 \sum_{q=1}^{+\infty} \frac{(\beta_{2q})^2}{(2q)!} \int_{\mathbb T} r_n(x)^{2q}\,dx <+\infty,\end{aligned} $$

that implies, by the dominated convergence theorem, \( \mathscr Z_n^\varepsilon \mathop {\to } \mathscr Z_n,\) ε → 0, in \(L^2(\mathbb P)\). □

Proof (Lemma 4 )

From (44) with q = 2

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathscr L_n[4] = \frac{\sqrt{E_n}}{128 \sqrt{2}}\Big (8 \int_{\mathbf{T}} H_4(T_n(x))\,dx - \int_{\mathbf{T}} H_4(\widetilde \partial_1 T_n(x))\,dx - \int_{\mathbf{T}} H_4(\widetilde \partial_2 T_n(x))\,dx \\ - 8 \int_{\mathbf{T}} H_2(T_n(x)) H_2(\widetilde \partial_1 T_n(x))\,dx - 8 \int_{\mathbf{T}} H_2(T_n(x)) H_2(\widetilde \partial_2 T_n(x))\,dx \\ -2 \int_{\mathbf{T}} H_2(\widetilde \partial_1 T_n(x))H_2(\widetilde \partial_2 T_n(x))\,dx.\vspace{2pt} {} \end{array} \end{aligned} $$

Lemmas 5.2 and 5.5 in [13] together with some straightforward computations allow one to write, from (82),

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathscr L_n[4] = \sqrt{\frac{E_n}{\mathscr N_n^2}}\frac{1}{128 \sqrt{2}}\Big ( 8 W_1^2 - 16 W_2^2 -16 W_3^2 -32 W_4^2 \\ + \frac{1}{\mathscr N_n} \sum_{\lambda\in \varLambda_n} |a_\lambda|{}^4 \left(-8 +12 \left(\left( \frac{\lambda_1}{\sqrt{n}}\right)^2 + \left( \frac{\lambda_2}{\sqrt{n}}\right)^2 \right)^2 \right)\Big ).\vspace{-3pt} {} \end{array} \end{aligned} $$

Recalling that \(\lambda _1^2 + \lambda _2 ^2 = n\), we obtain (47). Let us now note that we can write

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} W_1^2 - 2W_2^2 -2W_3^2 -4W_4^2 \\ = \frac{1}{\mathscr N_n/2}\sum_{\lambda, \lambda'\in \varLambda_n^+} \left ( 1 -\frac{2}{n^2}(\lambda_1 \lambda_1^{\prime} + \lambda_2 \lambda_2^{\prime})^2 \right )(|a_\lambda |{}^2 -1) (|a_{\lambda^{\prime}} |{}^2 -1).\vspace{-3pt} \end{array} \end{aligned} $$
(82)

Then it is immediate to compute from (82)

$$\displaystyle \begin{aligned} \mathbb E\left[W_1^2 - 2W_2^2 -2W_3^2 -4W_4^2 \right] = -1. \end{aligned} $$
(83)

Bearing in mind Lemma 4.1 in [13], still from (82) some straightforward computations lead to

$$\displaystyle \begin{aligned} \mathbb E\left[(W_1^2 - 2W_2^2 -2W_3^2 -4W_4^2 )^2 \right] = 2 + \widehat{\mu_n}(4)^2 +\frac{48}{\mathscr N_n}. \end{aligned} $$
(84)

From (83) and (84) hence we find

$$\displaystyle \begin{aligned} \text{Var}(W_1^2 - 2W_2^2 -2W_3^2 -4W_4^2)= 1 + \widehat{\mu_n}(4)^2 +\frac{48}{\mathscr N_n}.\end{aligned} $$

Recalling that \((\sqrt {2} |a_\lambda |)^2\) is distributed as a chi-square random variable with two degrees of freedom,

$$\displaystyle \begin{aligned} \text{Var}\left( \frac{1}{2} \frac{1}{\mathscr N_n}\sum_{\lambda\in \varLambda_n} |a_\lambda|{}^4 \right) =\frac{10}{\mathscr N_n},\end{aligned} $$
(85)

and moreover

$$\displaystyle \begin{aligned} \text{Cov}\left(W_1^2 - 2W_2^2 -2W_3^2 -4W_4^2, \frac{1}{2} \frac{1}{\mathscr N_n}\sum_{\lambda\in \varLambda_n} |a_\lambda|{}^4 \right) =-\frac{12}{\mathscr N_n}. \end{aligned}$$

This concludes the proof of Lemma 4. □

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peccati, G., Rossi, M. (2018). Quantitative Limit Theorems for Local Functionals of Arithmetic Random Waves. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_23

Download citation

Publish with us

Policies and ethics