Skip to main content

Perturbation of Conservation Laws and Averaging on Manifolds

  • Conference paper
  • First Online:
Computation and Combinatorics in Dynamics, Stochastics and Control (Abelsymposium 2016)

Part of the book series: Abel Symposia ((ABEL,volume 13))

Included in the following conference series:

Abstract

We prove a stochastic averaging theorem for stochastic differential equations in which the slow and the fast variables interact. The approximate Markov fast motion is a family of Markov process with generator \({\mathscr L}_x\) for which we obtain a quantitative locally uniform law of large numbers and obtain the continuous dependence of their invariant measures on the parameter x. These results are obtained under the assumption that \({\mathscr L}_x\) satisfies Hörmander’s bracket conditions, or more generally \({\mathscr L}_x\) is a family of Fredholm operators with sub-elliptic estimates. For stochastic systems in which the slow and the fast variable are not separate, conservation laws are essential ingredients for separating the scales in singular perturbation problems we demonstrate this by a number of motivating examples, from mathematical physics and from geometry, where conservation laws taking values in non-linear spaces are used to deduce slow-fast systems of stochastic differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angst, J., Bailleul, I, Tardif, C.: Kinetic Brownian motion on Riemannian manifolds. Electron. J. Probab. 20(110), 40 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Daletskii, A., Kalyuzhnyi, A.: Random Witten Laplacians: traces of semigroups, L 2-Betti numbers and index. J. Eur. Math. Soc. (JEMS) 10(3), 571–599 (2008)

    Google Scholar 

  3. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  MATH  Google Scholar 

  4. Arnaudon, M.: Semi-martingales dans les espaces homogènes. Ann. Inst. H. Poincaré Probab. Statist. 29(2), 269–288 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Atiyah, M.F.: Algebraic topology and operators in Hilbert space. In: Atiyah, M.F., Taam, C.T., et al. (eds.) Lectures in Modern Analysis and Applications. I, pp. 101–121. Springer, Berlin (1969)

    Chapter  Google Scholar 

  6. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  7. Bally, V., Caramellino, L.: Asymptotic development for the CLT in total variation distance. Bernoulli 22(4), 2442–2485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barret, F., von Renesse, M.: Averaging principle for diffusion processes via Dirichlet forms. Potential Anal. 41(4), 1033–1063 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baudoin, F.: An Introduction to the Geometry of Stochastic Flows. Imperial College Press, London (2004)

    Book  MATH  Google Scholar 

  10. Baudoin, F., Hairer, M., Teichmann, J.: Ornstein-Uhlenbeck processes on Lie groups. J. Funct. Anal. 255(4), 877–890 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bérard-Bergery, L., Bourguignon, J.-P.: Laplacians and Riemannian submersions with totally geodesic fibres. Illinois J. Math. 26(2), 181–200 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berglund, N., Gentz, B.: Noise-Induced phenomena in Slow-Fast Dynamical Systems. Probability and Its Applications (New York). Springer, London (2006). A sample-paths approach

    Google Scholar 

  13. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, New York (1992)

    Book  MATH  Google Scholar 

  14. Birrell, J., Hottovy, S., Volpe, G., Wehr, J.: Small mass limit of a Langevin equation on a manifold. Ann. Henri Poincaré 18(2), 707–755 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bismut, J.-M.: The hypoelliptic Laplacian on a compact Lie group. J. Funct. Anal. 255(9), 2190–2232 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bismut, J.-M., Lebeau, G.: Laplacien hypoelliptique et torsion analytique. C. R. Math. Acad. Sci. Paris 341(2), 113–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Borodin, A.N.: A limit theorem for the solutions of differential equations with a random right-hand side. Teor. Verojatnost. i Primenen. 22(3), 498–512 (1977)

    MathSciNet  Google Scholar 

  18. Borodin, A.N., Freidlin, M.I.: Fast oscillating random perturbations of dynamical systems with conservation laws. Ann. Inst. H. Poincaré Probab. Statist. 31(3), 485–525 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Cass, T., Friz, P.: Densities for rough differential equations under Hörmander’s condition. Ann. Math. (2) 171(3), 2115–2141 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Catellier, R., Gubinelli, M.: Averaging along irregular curves and regularisation of ODEs. Stochastic Process. Appl. 126(8), 2323–2366 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part III. In: Geometric-Analytic Aspects. Mathematical Surveys and Monographs, vol. 163. American Mathematical Society, Providence (2010)

    Google Scholar 

  22. Crisan, D., Ottobre, M.: Pointwise gradient bounds for degenerate semigroups (of UFG type). Proc. A 472(2195), 20160442, 23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. David Elworthy, K., Le Jan, Y., Li, X.-M.: The Geometry of Filtering. Frontiers in Mathematics. Birkhäuser, Basel (2010)

    Chapter  MATH  Google Scholar 

  24. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dolgopyat, D., Kaloshin, V., Koralov, L.: Sample path properties of the stochastic flows. Ann. Probab. 32(1A), 1–27 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dowell, R.M.: Differentiable approximations to Brownian motion on manifolds. PhD thesis, University of Warwick (1980)

    Google Scholar 

  27. Duong, M.H., Lamacz, A., Peletier, M.A., Sharma, U.: Variational approach to coarse-graining of generalized gradient flows. Calc. Var. 56, 100 (2017). Published first online

    Google Scholar 

  28. Eckmann, J.-P., Hairer, M.: Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Commun. Math. Phys. 219(3), 523–565 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Elworthy, K.D., Le Jan, Y., Li, X.-M.: On the Geometry of Diffusion Operators and Stochastic Flows. Lecture Notes in Mathematics, vol. 1720. Springer, New York (1999)

    Chapter  Google Scholar 

  30. Elworthy, K.D.: Stochastic Differential Equations on Manifolds. London Mathematical Society Lecture Note Series, vol. 70. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  31. Émery, M.: Stochastic Calculus in Manifolds. Universitext. Springer, Berlin (1989) With an appendix by P.-A. Meyer

    Book  MATH  Google Scholar 

  32. Freidlin, M.I.: The averaging principle and theorems on large deviations. Uspekhi Mat. Nauk 33(5(203)), 107–160, 238 (1978)

    Article  MathSciNet  Google Scholar 

  33. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260. Springer, New York (1984). Translated from the Russian by Joseph Szücs

    Google Scholar 

  34. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, 3rd edn. Springer, Heidelberg (2012). Translated from the 1979 Russian original by Joseph Szücs

    Google Scholar 

  35. Friz, P., Gassiat, P., Lyons, T.: Physical Brownian motion in a magnetic field as a rough path. Trans. Am. Math. Soc. 367(11), 7939–7955 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fu, H., Duan, J.: An averaging principle for two-scale stochastic partial differential equations. Stoch. Dyn. 11(2–3), 353–367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fu, H., Liu, J.: Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations. J. Math. Anal. Appl. 384(1), 70–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gonzales-Gargate, I.I., Ruffino, P.R.: An averaging principle for diffusions in foliated spaces. Ann. Probab. 44(1), 567–588 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Greene, R.E., Wu, H.: C approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. École Norm. Sup. (4) 12(1), 47–84 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gu, Y., Mourrat, J.-C.: Pointwise two-scale expansion for parabolic equations with random coefficients. Probab. Theory Relat. Fields 166(1–2), 585–618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hairer, M., Pavliotis, G.A.: Periodic homogenization for hypoelliptic diffusions. J. Statist. Phys. 117(1–2), 261–279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. Math. (2) 164(3), 993–1032 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hairer, M., Pardoux, E.: Homogenization of periodic linear degenerate PDEs. J. Funct. Anal. 255(9), 2462–2487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hairer, M., Pillai, N.S.: Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 47(2), 601–628 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hairer, M., Mattingly, J.C., Scheutzow, M.: Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations. Probab. Theory Related Fields 149(1–2), 223–259 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Has’minskii, R.Z.: On the principle of averaging the Itô’s stochastic differential equations. Kybernetika (Prague) 4, 260–279 (1968)

    MathSciNet  Google Scholar 

  47. Helland, I.S.: Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist. 9(2), 79–94 (1982)

    MathSciNet  MATH  Google Scholar 

  48. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  49. Högele, M., Ruffino, P.: Averaging along foliated Lévy diffusions. Nonlinear Anal. 112, 1–14 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ikeda, N., Ogura, Y.: A degenerating sequence of Riemannian metrics on a manifold and their Brownian motions. In: Diffusion Processes and Related Problems in Analysis, Vol. I. Progress in probability, vol. 22, pp. 293–312. Birkhäuser, Boston (1990)

    Chapter  MATH  Google Scholar 

  51. Kelly, D., Melbourne, I.: Deterministic homogenization for fast-slow systems with chaotic noise. J. Funct. Anal. 272(10), 4063–4102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kifer, Y.: Random Perturbations of Dynamical Systems. Progress in Probability and Statistics, vol. 16. Birkhäuser, Boston (1988)

    Chapter  MATH  Google Scholar 

  53. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104(1), 1–19 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol I. Interscience Publishers, a division of John Wiley & Sons, New York/London (1963)

    Google Scholar 

  55. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 345. Springer, Heidelberg (2012). Time symmetry and martingale approximation

    Book  MATH  Google Scholar 

  56. Korepanov, A., Kosloff, Z., Melbourne, I.: Martingale-coboundary decomposition for families of dynamical systems. Annales I’Institut Henri Poincaré, Analyse non-linéaire, pp. 859–885 (2018)

    Google Scholar 

  57. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kuehn, C.: Multiple Time Scale Dynamics. Volume 191 of Applied Mathematical Sciences. Springer, Cham (2015)

    Google Scholar 

  59. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32(1), 1–76 (1985)

    MathSciNet  MATH  Google Scholar 

  60. Kurtz, T.G.: A general theorem on the convergence of operator semigroups. Trans. Am. Math. Soc. 148, 23–32 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  61. Langevin, P.: Sur la thèorie du mouvement brownien. C. R. Acad. Sci. (Paris), 146 (1908)

    Google Scholar 

  62. Li, X.-M.: An averaging principle for a completely integrable stochastic Hamiltonian system. Nonlinearity 21(4), 803–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Li, X.-M.: Effective diffusions with intertwined structures. arxiv:1204.3250 (2012)

    Google Scholar 

  64. Li, X.-M.: Random perturbation to the geodesic equation. Ann. Probab. 44(1), 544–566 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Li, X.-M.: Homogenisation on homogeneous spaces. J. Math. Soc. Jpn. 70(2), 519–572 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. Li, X.-M.: Limits of random differential equations on manifolds. Probab. Theory Relat. Fields 166(3–4), 659–712 (2016). https://doi.org/10.1007/s00440-015-0669-x

    Article  MathSciNet  MATH  Google Scholar 

  67. Liverani, C., Olla, S.: Toward the Fourier law for a weakly interacting an harmonic crystal. J. Am. Math. Soc. 25(2), 555–583 (2012)

    Article  MATH  Google Scholar 

  68. Mazzeo, R.R., Melrose, R.B.: The adiabatic limit, Hodge cohomology and Leray’s spectral sequence for a fibration. J. Differ. Geom. 31(1), 185–213 (1990)

    MATH  Google Scholar 

  69. Mischler, S., Mouhot, C.: Exponential stability of slowly decaying solutions to the kinetic- Fokker-Planck equation. Arch. Ration. Mech. Anal. 221(2), 677–723 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. Myers, S.B., Steenrod, N.E.: The group of isometries of a Riemannian manifold. Ann. Math. (2) 40(2), 400–416 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  71. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  72. Ogura, Y., Taniguchi, S.: A probabilistic scheme for collapse of metrics. J. Math. Kyoto Univ. 36(1), 73–92 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  73. Papanicolaou, G.C., Kohler, W.: Asymptotic theory of mixing stochastic ordinary differential equations. Commun. Pure Appl. Math. 27, 641–668 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  74. Papanicolaou, G.C., Stroock, D., Varadhan, S.R.S.: Martingale approach to some limit theorems. In: Papers from the Duke Turbulence Conference (Duke University,1976), ii+120pp. Duke University, Durham (1977)

    Google Scholar 

  75. Papanicolaou, G.C., Varadhan, S.R.S.: A limit theorem with strong mixing in Banach space and two applications to stochastic differential equations. Commun. Pure Appl. Math. 26, 497–524 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  76. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Texts in Applied Mathematics, vol. 53. Springer, New York (2008)

    Google Scholar 

  77. Ruffino, P.R.: Application of an averaging principle on foliated diffusions: topology of the leaves. Electron. Commun. Probab. 20(28), 5 (2015)

    MathSciNet  MATH  Google Scholar 

  78. Schoen, R., Yau, S.-T.: Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge (1994). Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso

    Google Scholar 

  79. Skorokhod, A.V., Hoppensteadt, F.C., Salehi, H.: Random Perturbation Methods with Applications in Science and Engineering. Applied Mathematical Sciences, vol. 150. Springer, New York (2002)

    Book  MATH  Google Scholar 

  80. Stratonovich, R.L.: Selected problems in the theory of fluctuations in radio engineering. Sov. Radio, Moscow (1961). In Russian

    Google Scholar 

  81. Stratonovich, R.L.: Topics in the Theory of Random Noise. Vol. I: General Theory of Random Processes. Nonlinear transformations of signals and noise. Revised English edition. Translated from the Russian by Richard A. Silverman. Gordon and Breach Science Publishers, New York/London (1963)

    Google Scholar 

  82. Stroock, D., Varadhan, S.R.S.: Theory of diffusion processes. In: Stochastic Differential Equations. C.I.M.E. Summer Schools, vol. 77, pp. 149–191. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  83. Tam, L.-F.: Exhaustion functions on complete manifolds. In: Lee, Y.-I., Lin, C.-S., Tsui, M.-P. (eds.) Recent Advances in Geometric Analysis. Advanced Lectures in Mathematics (ALM), vol. 11, pp. 211–215. Internat Press, Somerville (2010)

    Google Scholar 

  84. Tanno, S.: The first eigenvalue of the Laplacian on spheres. Tôhoku Math. J. (2) 31(2), 179–185 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  85. Uhlenbeck, G.E., Ornstein, L.S.: Brownian motion in a field of force and the diffusion model of chemical reactions. Phys. Rev. 36, 823–841 (1930)

    Article  MATH  Google Scholar 

  86. Urakawa, H.: The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold. Compositio Math. 59(1), 57–71 (1986)

    MathSciNet  MATH  Google Scholar 

  87. van Erp, E.: The Atiyah-Singer index formula for subelliptic operators on contact manifolds. Part I. Ann. Math. (2) 171(3), 1647–1681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  88. van Erp, E.: The index of hypoelliptic operators on foliated manifolds. J. Noncommut. Geom. 5(1), 107–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  89. Veretennikov, A.Yu.: On an averaging principle for systems of stochastic differential equations. Mat. Sb. 181(2), 256–268 (1990)

    MATH  Google Scholar 

  90. Villani, C.: Hypocoercive diffusion operators. In: International Congress of Mathematicians, vol. III, pp. 473–498. European Mathematical Society, Zürich (2006)

    Google Scholar 

  91. Weinan, E.: Principles of Multiscale Modeling. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  92. Yosida, K.: Functional Analysis. Die Grundlehren der Mathematischen Wissenschaften, Band 123. Academic Press/Springer, New York/Berlin (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Mei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, XM. (2018). Perturbation of Conservation Laws and Averaging on Manifolds. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_18

Download citation

Publish with us

Policies and ethics