Skip to main content

An Analyst’s Take on the BPHZ Theorem

  • Conference paper
  • First Online:
Computation and Combinatorics in Dynamics, Stochastics and Control (Abelsymposium 2016)

Part of the book series: Abel Symposia ((ABEL,volume 13))

Included in the following conference series:

Abstract

We provide a self-contained formulation of the BPHZ theorem in the Euclidean context, which yields a systematic procedure to “renormalise” otherwise divergent integrals appearing in generalised convolutions of functions with a singularity of prescribed order at their origin. We hope that the formulation given in this article will appeal to an analytically minded audience and that it will help to clarify to what extent such renormalisations are arbitrary (or not). In particular, we do not assume any background whatsoever in quantum field theory and we stay away from any discussion of the physical context in which such problems typically arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It would have looked more natural to impose the stronger condition \(\deg _\infty \mathfrak {t}^{(k)} = \deg _\infty \mathfrak {t} - |k|\) as before. One may further think that in this case one would be able to extend Theorem 4.3 to all diagrams Γ, not just those in \(\mathcal {H}_+\). This is wrong in general, although we expect it to be true after performing a suitable form of positive renormalisation as in [2, 3]. This is not performed here, and as a consequence we are unable to take advantage of the additional large-scale cancellations that the stronger condition \(\deg _\infty \mathfrak {t}^{(k)} = \deg _\infty \mathfrak {t} - |k|\) would offer.

  2. 2.

    I.e. T i is such that if u ∈ T i and v ≤ u, then v ∈ T i.

References

  1. Bogoliubow, N.N., Parasiuk, O.S.: Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math. 97, 227–266 (1957). https://doi.org/10.1007/BF02392399

    Article  MathSciNet  Google Scholar 

  2. Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures (2016). ArXiv e-prints. http://arxiv.org/abs/1610.08468

  3. Chandra, A., Hairer, M.: An analytic BPHZ theorem for regularity structures (2016). ArXiv e-prints. http://arxiv.org/abs/1612.08138

  4. Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199(1), 203–242 (1998). http://arxiv.org/abs/hep-th/9808042, https://doi.org/10.1007/s002200050499

    Article  MathSciNet  Google Scholar 

  5. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000). http://arxiv.org/abs/hep-th/9912092, https://doi.org/10.1007/s002200050779

    Article  MathSciNet  Google Scholar 

  6. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216(1), 215–241 (2001). http://arxiv.org/abs/hep-th/0003188, https://doi.org/10.1007/PL00005547

    Article  MathSciNet  Google Scholar 

  7. de Calan, C., Rivasseau, V.: Local existence of the Borel transform in Euclidean \(\Phi ^{4}_{4}\). Commun. Math. Phys. 82(1), 69–100 (1981/1982)

    Google Scholar 

  8. Dyson, F.J.: The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. (2) 75, 486–502 (1949). https://doi.org/10.1103/PhysRev.75.486

    Article  MathSciNet  Google Scholar 

  9. Dyson, F.J.: The S matrix in quantum electrodynamics. Phys. Rev. (2) 75, 1736–1755 (1949). https://doi.org/10.1103/PhysRev.75.1736

    Article  Google Scholar 

  10. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré Sect. A (N.S.) 19, 211–295 (1973/1974)

    Google Scholar 

  11. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on renormalized Feynman graphs. Commun. Math. Phys. 100(1), 23–55 (1985). https://doi.org/10.1007/BF01212686

    Article  MathSciNet  Google Scholar 

  12. Gallavotti, G., Nicolò, F.: Renormalization theory in four-dimensional scalar fields. I. Commun. Math. Phys. 100(4), 545–590 (1985)

    Article  MathSciNet  Google Scholar 

  13. Gallavotti, G., Nicolò, F.: Renormalization theory in four-dimensional scalar fields. II. Commun. Math. Phys. 101(2), 247–282 (1985)

    Article  MathSciNet  Google Scholar 

  14. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014). http://arxiv.org/abs/1303.5113, https://doi.org/10.1007/s00222-014-0505-4

    Article  MathSciNet  Google Scholar 

  15. Hairer, M.: The motion of a random string (2016). ArXiv e-prints. http://arxiv.org/abs/1605.02192

  16. Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015). ArXiv e-prints. http://arxiv.org/abs/1512.07845

  17. Hepp, K.: Proof of the Bogoliubov-Parasiuk theorem on renormalization. Commun. Math. Phys. 2(4), 301–326 (1966). https://doi.org/10.1007/BF01773358

    Article  Google Scholar 

  18. Salam, A.: Divergent integrals in renormalizable field theories. Phys. Rev. (2) 84, 426–431 (1951). https://doi.org/10.1103/PhysRev.84.426

    Article  MathSciNet  Google Scholar 

  19. Salam, A.: Overlapping divergences and the S-matrix. Phys. Rev. (2) 82, 217–227 (1951). https://doi.org/10.1103/PhysRev.82.217

    Article  MathSciNet  Google Scholar 

  20. Weinberg, S.: High-energy behavior in quantum field-theory. Phys. Rev. (2) 118, 838–849 (1960). https://doi.org/10.1103/PhysRev.118.838

    Article  MathSciNet  Google Scholar 

  21. Zimmermann, W.: Convergence of Bogoliubov’s method of renormalization in momentum space. Commun. Math. Phys. 15, 208–234 (1969). https://doi.org/10.1007/BF01645676

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ajay Chandra and Philipp Schönbauer for several useful discussions during the preparation of this article. Financial support through ERC consolidator grant 615897 and a Leverhulme leadership award is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hairer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hairer, M. (2018). An Analyst’s Take on the BPHZ Theorem. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_16

Download citation

Publish with us

Policies and ethics