Skip to main content

Determinantal Point Processes and Fermions on Polarized Complex Manifolds: Bulk Universality

  • Conference paper
  • First Online:
Book cover Algebraic and Analytic Microlocal Analysis (AAMA 2013)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 269))

Included in the following conference series:

Abstract

We consider determinantal point processes on a compact complex manifold X in the limit of many particles. The correlation kernels of the processes are the Bergman kernels associated to a high power of a given Hermitian holomorphic line bundle L over X. The empirical measure on X of the process, describing the particle locations, converges in probability towards the pluripotential equilibrium measure, expressed in term of the Monge–Ampère operator. The asymptotics of the corresponding fluctuations in the bulk are shown to be asymptotically normal and described by a Gaussian free field and applies to test functions (linear statistics) which are merely Lipschitz continuous. Moreover, a scaling limit of the correlation functions in the bulk is shown to be universal and expressed in terms of (the higher dimensional analog of) the Ginibre ensemble. This geometric setting applies in particular to normal random matrix ensembles, the two dimensional Coulomb gas, free fermions in a strong magnetic field and multivariate orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    General references for this section are the books [33, 60].

References

  1. Alvarez-Gaumé, L., Bost, J.-B., Moore, G., Nelson, P., Vafa, C.: Bosonization on higher genus Riemann surfaces. Commun. Math. Phys. 112(3), 503–552 (1987)

    Article  MathSciNet  Google Scholar 

  2. Ameur, Y., Hedenmalm, H., Makarov, N.: Berezin transform in polynomial Bergman spaces. Commun. Pure Appl. Math. 63(12) (2010). arXiv:0807.0369

    Article  MathSciNet  Google Scholar 

  3. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31–81 (2011). arXiv:0807.0375

    Article  MathSciNet  Google Scholar 

  4. Ameur, Y., Hedenmalm, H., Makarov, N.: Random normal matrices and Ward identities. Ann. Probab. 43(3), 1157–1201 (2015). arXiv:1109.5941

    Article  MathSciNet  Google Scholar 

  5. Ameur, Y., Kang, NG., Makarov, N.: Rescaling Ward identities in the random normal matrix model (2014). arXiv:1410.4132

  6. Bardenet, R., Hardy, A.: Monte Carlo with determinantal point processes. arXiv:1605.00361

  7. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. arXiv:1609.08582

  8. Bedford, E., Taylor, A.: The Dirichlet problem for a complex Monge-Ampere equation. Invent. Math 37(1), 1–44 (1976)

    Google Scholar 

  9. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Corrected reprint of the: original. Grundlehren Text Editions. Springer, Berlin (1992)

    Book  Google Scholar 

  10. Berman, R.J., Berndtsson, B., Sjöstrand, J.: A direct approach to asymptotics of Bergman kernels for positive line bundles. Arkiv för Matematik. 46(2), 197–217 (2008)

    Article  MathSciNet  Google Scholar 

  11. Berman, R.J., Boucksom, S.: Witt Nyström, D: Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207(1), 1–27 (2011)

    Article  MathSciNet  Google Scholar 

  12. Berman, R.J., Ortega-Cerdà, J.: Sampling of real multivariate polynomials and pluripotential theory. Am. J. Math. arXiv:1509.00956. (to appear)

  13. Berman, R.J.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Am. J. Math. 131(5) (2009)

    Google Scholar 

  14. Berman, R.J.: Bergman kernels and equilibrium measures for polarized pseudoconcave domains. Int. J. Math. 21(1), 77–115 (2010)

    Article  MathSciNet  Google Scholar 

  15. Berman, R.J.: Bergman kernels and local holomorphic Morse inequalities. Math. Z 248(2), 325–344 (2004)

    Google Scholar 

  16. Berman, R.J.: Bergman kernels and weighted equilibrium measures of \({\mathbb{C}}^{n}.\) Indiana Univ. Math. J. 58(4) (2009)

    Google Scholar 

  17. Berman, R.J.: Boucksom, S; Growth of balls of holomorphic sections and energy at equilibrium. 42 pages. Invent. Math. 181(2), 337–394 (2010)

    Article  MathSciNet  Google Scholar 

  18. Berman, R.J.: Determinantal point processes and fermions on complex manifolds: large deviations and Bosonization. Commun. Math. Phys. 327(1), 1–47 (2014). arXiv:0812.4224

    Article  MathSciNet  Google Scholar 

  19. Berman, R.J.: Kähler-Einstein metrics, canonical random point processes and birational geometry. http://arxiv.org/abs/1307.3634 (to appear in the AMS Proceedings of the 2015 Summer Research Institute on Algebraic Geometry)

  20. Berman, R.J.: Sharp asymptotics for toeplitz determinants and convergence towards the gaussian free field on riemann surfaces. Int. Math. Res. Not. 2012(22), 5031–5062 (2012)

    Article  MathSciNet  Google Scholar 

  21. Berman, R.J.: Super Toeplitz operators on holomorphic line bundles. J. Geom. Anal. 16(1), 1–22 (2006)

    Google Scholar 

  22. Bleher, P., Shiffman, B., Zelditch, S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142(2), 351–395 (2000)

    Article  MathSciNet  Google Scholar 

  23. Bogaevskiĭ, I.A.: Singularities of convex hulls of three-dimensional hypersurfaces. Proc. Steklov Inst. Math. 221(2), 71–90 (1998)

    Google Scholar 

  24. Bonnet, G., David, F., Eynard, B.: Breakdown of universality in multi-cut matrix models. J. Phys. A33, 6739–6768 (2000)

    Article  MathSciNet  Google Scholar 

  25. Boutet de Monvel., Sjötrand, J.: Sur la singularite des noyaux de Bergman et de Szegö. Asterisque 34–35, 123–164 (1976)

    Google Scholar 

  26. Bryc, W.: A remark on the connection between the large deviation principle and the central limit theorem. Stat. Probab. Lett. 18(4), 253–256 (1993). Elsevier

    Article  MathSciNet  Google Scholar 

  27. Caffarelli, L.A., Rivière, N.M.: Smoothness and analyticity of free boundaries in variational inequalities. Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4) 3(2), 289–310 (1976)

    Google Scholar 

  28. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry in Quantum Mechanics. World Scientific Publication (2001)

    Google Scholar 

  29. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335 (1999)

    Article  MathSciNet  Google Scholar 

  30. Deift, P.A.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant lecture notes in mathematics, vol. 3. New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence (1999)

    Google Scholar 

  31. Deift, P.A.: Universality for mathematical and physical systems. Int. Congr. Math. I, 125–152 (2004). Eur. Math. Soc., Zürich

    Google Scholar 

  32. Delin, H.: Pointwise estimates for the weighted Bergman projection kernel in \({\mathbb{C}}^{n}\) using a weighted \(L^{2}\) estimate for the \(\bar{\partial }\) equation. Ann. Inst. Fourier (Grenoble) 48(4), 967–997 (1998)

    Google Scholar 

  33. Demailly, J-P.: Complex analytic and algebraic geometry. https://www-fourier.ujf-grenoble.fr/~demailly/books.html

  34. Demailly, J-P.: Estimations \(L^{2}\) pour l’opérateur \(\bar{\partial }\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. (French). Ann. Sci. École Norm. Sup. (4) 15(3), 457–511 (1982)

    Article  MathSciNet  Google Scholar 

  35. Demailly, J-P.: Potential theory in several complex variables. https://www-fourier.ujf-grenoble.fr/~demailly/

  36. Dembo, A., Zeitouni O.: Large deviation techniques and applications. Corrected reprint of the 2nd (1988) edition. Stochastic Modelling and Applied Probability, vol. 38, pp. xvi+396. Springer, Berlin (2010)

    Google Scholar 

  37. Donaldson, S.K.: Scalar curvature and projective embeddings. II. Q. J. Math. 56(3), 345–356 (2005)

    Google Scholar 

  38. Ferrari, F., Klevtsov, S., Zelditch, S.: Random Kähler metrics. Nucl. Phys. B 869(1), 89–110 (2013)

    Article  MathSciNet  Google Scholar 

  39. Forrester, P.J.: Fluctuation formula for complex random matrices. J. Phys. A 32(13), L159–L163 (1999)

    Article  MathSciNet  Google Scholar 

  40. Forrester, P.J.: Particles in a magnetic field and plasma analogies: doubly periodic boundary conditions. J. Phys. A 39(41), 13025–13036 (2006)

    Article  MathSciNet  Google Scholar 

  41. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  MathSciNet  Google Scholar 

  42. Götz, M., Maymeskul, V.V., Saff, E.B.: Asymptotic distribution of nodes for near-optimal polynomial interpolation on certain curves in \({\mathbb{R}}^{2}\). Constr. Approx. 18(2), 255–283 (2002)

    Article  MathSciNet  Google Scholar 

  43. Guedj, V., Zeriahi, A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)

    Article  MathSciNet  Google Scholar 

  44. Guionnet, A.: Large deviations and stochastic calculus for large random matrices. Probab. Surv. 1, 72–172 (2004). (electronic)

    Article  MathSciNet  Google Scholar 

  45. Gurbatov, S.N., Malakhov, A.I., Saichev, A.I.: Non-Linear Random Waves and Turbulence in Non-dispersive Media: Waves, Rays, Particles. Manchester University Press, Manchester (1991). With an appendix (Singularities and bifurcations of potential flows) by Arnold et al

    Google Scholar 

  46. Hedenmalm, H., Makarov, N.: Quantum Hele-Shaw flow (2004). arXiv.org/abs/math.PR/0411437

  47. Hough, J.B., Krishnapur, M., Peres, Y.l., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)

    Article  MathSciNet  Google Scholar 

  48. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  Google Scholar 

  49. Johansson, K.: Random matrices and determinantal processes. arXiv:math-ph/0510038

  50. Klevtsov, S.: Geometry and large N limits in Laughlin states. arXiv:1608.02928

  51. Klimek, M.: Pluripotential Theory. London mathematical society monographs. New Series, 6. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1991)

    Google Scholar 

  52. Laughlin, R.B.: Elementary theory: the incompressible quantum fluid. In: The Quantum Hall Effect. Springer, Berlin (1987)

    Chapter  Google Scholar 

  53. Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. II. Positivity for vector bundles, and multiplier ideals. A series of modern surveys in mathematics, vol. 48 and 49. Springer, Berlin (2004)

    Google Scholar 

  54. Leblé, T., Serfaty, S.: Fluctuations of two-dimensional coulomb gases. arXiv:1609.08088

  55. Lindholm, N.: Sampling in weighted \(L^{p}\) spaces of entire functions in \({\mathbb{C}}^{n}\) and estimates of the Bergman kernel. J. Funct. Anal. 182, 390–426 (2001)

    Google Scholar 

  56. Macchi, O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975)

    Article  MathSciNet  Google Scholar 

  57. Pastur, L., Shcherbina, M.: Bulk universality and related properties of Hermitian matrix models. J. Stat. Phys. 130(2), 205–250 (2008)

    Article  MathSciNet  Google Scholar 

  58. Pastur, L.: A simple approach to the global regime of Gaussian ensembles of random matrices. Ukraïn. Mat. Zh. 57(6), 790–817 (2005), Translation in Ukrainian Math. J. 57(6), 936–966 (2005)

    Article  MathSciNet  Google Scholar 

  59. Pastur, L.: Limiting laws of linear eigenvalue statistics for Hermitian matrix models. J. Math. Phys. 47(10) (2006)

    Article  MathSciNet  Google Scholar 

  60. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley classics library. Wiley, New York (1994)

    Book  Google Scholar 

  61. Pokorny, F.T., Singer, M.: Toric partial density functions and stability of toric varieties. Math. Ann. 358(3–4), 879–923 (2014). Springer

    Google Scholar 

  62. Rider, B., Virag, B.: Complex determinantal processes and H1 noise. Electron. J. Probab. 12 (2007)

    Article  MathSciNet  Google Scholar 

  63. Rider, B., Virág, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN, (2) (2007)

    Google Scholar 

  64. Ross, J., Singer, M.: Asymptotics of Partial Density Functions for Divisors. arXiv:1312.1145

  65. Ross, J., Witt Nyström, D.: Homogeneous Monge-Ampère Equations and Canonical Tubular Neighbourhoods in Kähler Geometry. arXiv:1403.3282

  66. Saff.E., Totik.V.: Logarithmic Potentials with Exteriour Fields. Springer, Berlin (1997) (with an appendix by Bloom, T)

    Google Scholar 

  67. Scardicchio, A., Torquato, S., Zachary, C.E.: Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory . J. Stat. Mech. Theory Exp. (1) (2008)

    Google Scholar 

  68. Scardicchio, A., Torquato, S., Zachary, C.E.: Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. Phys. Rev. E (3) 79(4) (2009)

    Google Scholar 

  69. Schaeffer, D.: Some examples of singularities in a free boundary. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4(1), 133–144 (1977)

    Google Scholar 

  70. Sheffield, Scott: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007)

    Article  MathSciNet  Google Scholar 

  71. Shiffman, B., Zelditch, S.: Distribution of zeros of random and quantum chaotic sections of positive line bundles. Commun. Math. Phys. 200(3), 661–683 (1999)

    Article  MathSciNet  Google Scholar 

  72. Shiffman, B., Zelditch S.: Number variance of random zeros on complex manifolds, II: smooth statistics. Pure Appl. Math. Q. 6(4) (2010). Special Issue: In honor of Joseph J. Kohn. Part 2

    Article  MathSciNet  Google Scholar 

  73. Shigekawa, I.: Spectral properties of Schrodinger operators with magnetic fields for a spin 1/2 particle. 101(2), 255–285 (1991)

    Google Scholar 

  74. Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21(1–2), 107–125 (2004)

    Article  MathSciNet  Google Scholar 

  75. Soshnikov, A.: Determinantal random point fields. (Russian) Uspekhi Mat. Nauk 55 (2000), no. 5(335), 107–160; translation. Russian Math. Surv. 55(5), 923–975 (2000)

    Article  MathSciNet  Google Scholar 

  76. Soshnikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab. 30(1), 171–187 (2002)

    Article  MathSciNet  Google Scholar 

  77. Zabrodin, A.: Matrix models and growth processes: from viscous flows to the quantum Hall effect. NATO Sci. Ser. II Math. Phys. Chem. 221 (2006). arXiv.org/abs/hep-th/0411437. Springer, Dordrecht

  78. Zelditch, S., Zhou, P.: Interface asymptotics of partial Bergman kernels on S1-symmetric Kaehler manifolds

    Google Scholar 

  79. Zelditch, S.: Szegö kernels and a theorem of Tian. Internat. Math. Res. Not. (6), 317–331 (1998)

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Sébastien Boucksom, David Witt-Nyström, Frédéric Faure and Jeff Steif for stimulating and illuminating discussions. The author is particularly grateful to Bo Berndtsson for helpful discussions concerning Theorem 4.3. Thanks also to the referee for comments that helped to improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Berman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berman, R.J. (2018). Determinantal Point Processes and Fermions on Polarized Complex Manifolds: Bulk Universality. In: Hitrik, M., Tamarkin, D., Tsygan, B., Zelditch, S. (eds) Algebraic and Analytic Microlocal Analysis. AAMA 2013. Springer Proceedings in Mathematics & Statistics, vol 269. Springer, Cham. https://doi.org/10.1007/978-3-030-01588-6_5

Download citation

Publish with us

Policies and ethics