Skip to main content

Nanoparticle-Stabilized CO2 Foam Flooding

  • Conference paper
  • First Online:

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

The efficacy of several nanoparticles [silica (Si), nanoclays, fly ash and iron oxide (IO)] in stabilizing CO2 foam is studied via flow experiments in a microfluidic device. The resulting foam is characterized using modified bulk foam tests. Size and uniformity of nanoparticle (NP) dispersions are quantified using dynamic light scattering. Results indicate that the size distribution and surface charge of the particles are influential parameters on the stability and formability of the foam, which in turn have a direct relationship with oil recovery performance. Si, nanoclays and fly ash NPs assisted by surfactant mixtures generate stable foams and result in high ultimate oil recoveries (over 90%). Even though IO-surfactant mixtures generate foams with relatively inferior stability characteristics and ultimate recovery, approximately three quarters of the IO NPs are recovered once exposed to a magnetic field. Unlike nanoclays and fly ash, the use of Si and IO NPs as foam stabilizers results in significant improvements in recovery at much smaller pore-volumes injected (~10 PVIs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kalyanaraman, N., Arnold, C., Gupta, A., Tsau, J.S., Ghahfarokhi, R.B.: Stability improvement of CO2 foam for enhanced oil-recovery applications using polyelectrolytes and polyelectrolyte complex nanoparticles. J. Appl. Polym. Sci. 134(6) (2017)

    Google Scholar 

  2. Worthen, A.J., Bagaria, H.G., Chen, Y., Bryant, S.L., Huh, C., Johnston, K.P.: Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture. J. Colloid Interface Sci. 391, 142–151 (2013)

    Article  Google Scholar 

  3. Kim, I., Worthen, A.J., Johnston, K.P., DiCarlo, D.A., Huh, C.: Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. J. Nanopart. Res. 18(4) (2016)

    Google Scholar 

  4. Guo, H., Zitha, P.L.J., Faber, R., Buijse, M.: A novel alkaline/surfactant/foam enhanced oil recovery process. SPE J. 17(04), 1186–1195 (2012)

    Article  Google Scholar 

  5. Yekeen, N., Manan, M.A., Idris, A.K., Padmanabhan, E., Junin, R., Samin, A.M.: A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery. J. Petrol. Sci. Eng. 164, 43–74 (2018)

    Article  Google Scholar 

  6. Hua, X., Michael, A., Bevan, A.M., Frechette, J.: Competitive adsorption between nanoparticles and surface active ions for the oil-water interface. Langmuir 34(16), 4830–4842 (2018)

    Article  Google Scholar 

  7. Yousef, Z.A., Almobarky, M.A., Schechter, D.S.: The effect of nanoparticle aggregation on surfactant foam stability. J. Colloid Interface Sci. 511, 365–373 (2018)

    Article  Google Scholar 

  8. Guo, F., He, J., Johnson, P.A., Aryana, S.A.: Stabilization of CO2 foam using by-product fly ash and recyclable iron oxide nanoparticles to improve carbon utilization in EOR processes. Sustain. Energy Fuels 1, 814–822 (2017)

    Article  Google Scholar 

  9. Guo, F., Aryana, S.A.: An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel 186, 430–442 (2016)

    Article  Google Scholar 

  10. Hirasaki, G.J., Lawson, J.B.: Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. Soc. Petrol. Eng. J. 25(02), 176–190 (1985)

    Article  Google Scholar 

  11. Hunter, T.N., Pugh, R.J., Franks, G.V., Jameson, G.J.: The role of particles in stabilizing foams and emulsions. Adv. Coll. Interface. Sci. 137, 57–81 (2008)

    Article  Google Scholar 

  12. Shaw, D.: Introduction to Colloid and Surface Chemistry, 4th edn. Butterworth-Heinemann (1992)

    Google Scholar 

  13. Denkov, D.A., Lvanov, B.I., Kralchevsky, A., Wasan, T.D.: A possible mechanism of stabilization of emulsions by solid particles. J. Colloid Interface Sci. 150, 589–593 (1992)

    Article  Google Scholar 

  14. Kaptay, G.: Interfacial criteria for stabilization of liquid foams by solid particles. Colloids Surf. A Physicochem. Eng. Asp. 230(1–3), 67–80 (2004)

    Google Scholar 

  15. Singh, R., Mohanty, K.K.: Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery. Energy Fuels 29(2), 467–479 (2015)

    Article  Google Scholar 

  16. Worthen, A.J., Foster, L.M., Dong, J., Bollinger, J.A., Peterman, A.H., Pastora, L.E.: Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles. Langmuir 30(4), 984–994 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman A. Aryana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, F., Aryana, S.A. (2019). Nanoparticle-Stabilized CO2 Foam Flooding. In: Banerjee, S., Barati, R., Patil, S. (eds) Advances in Petroleum Engineering and Petroleum Geochemistry. CAJG 2018. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-01578-7_15

Download citation

Publish with us

Policies and ethics