Skip to main content

Hydroporphyrins in Fluorescence In Vivo Imaging

  • Chapter
  • First Online:
Reviews in Fluorescence 2017

Part of the book series: Reviews in Fluorescence ((RFLU))

  • 497 Accesses

Abstract

Over the last several years significant progress has been made on the development of near infrared (near-IR) organic, inorganic, and nanomaterial fluorophores for diagnostic and therapeutic applications (Ptaszek M, Prog Mol Biol Transl Sci 113:59–108, 2013; Chernov KG, Redchuk TA, Omelina ES, Verkusha VV, Chem Rev 117:6423–6446, 2017; Chen G, Qiu H, Prasad PN, Chen X, Chem Rev 114:5161–5214, 2014; Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H, Chem Rev 115:10725–10815, 2015; Smith BR, Gambhir SS, Chem Rev 117:901–986, 2017; Xu G, Zeng S, Zzhang B, Swihart MT, Yong K-T, Prasad P, Chem Rev 117:901–986, 2017; Zhou J, Yang Y, Zhang C-y, Chem Rev 115:11669–11717, 2015; Hong G, Diao S, Antaris AL, Dai H, Chem Rev 117:6423–6446, 2017) .Among them, hydroporphyrins have emerged as a class of photonic agents, with a set of unique properties, which may expand the frontiers of fluorescence medicinal imaging. This article discusses basic optical and photochemical properties of hydroporphyrins, reviews their applications as contrast agents for in vivo fluorescence imaging, and highlights recent advances in the development of hydroporphyrin energy transfer arrays with potential applications in fluorescence imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 30 July 2019

    The original version of this chapter unfortunately contained a mistake in the order of citation and the list of references. The references 71–74 were incorrectly cited in text and numbered in the reference list. The numbering of in-text citations and the reference list has now been corrected.

References

  1. Ptaszek M (2013) Rational design of fluorophores for in vivo applications. Prog Mol Biol Transl Sci 113:59–108

    Article  CAS  Google Scholar 

  2. Chernov KG, Redchuk TA, Omelina ES, Verkusha VV (2017) Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem Rev 117:6423–6446

    Article  CAS  Google Scholar 

  3. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214

    Article  CAS  Google Scholar 

  4. Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815

    Article  CAS  Google Scholar 

  5. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117:901–986

    Article  CAS  Google Scholar 

  6. Xu G, Zeng S, Zzhang B, Swihart MT, Yong K-T, Prasad P (2017) New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 117:901–986

    Article  Google Scholar 

  7. Zhou J, Yang Y, Zhang C-y (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115:11669–11717

    Article  CAS  Google Scholar 

  8. Hong G, Diao S, Antaris AL, Dai H (2017) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 117:6423–6446

    Article  Google Scholar 

  9. Kobayashi M, Akiyama M, Kano H, Kise H (2006) In: Grimm B, Porra RR, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls biochemistry, biophysics, function and applications. Springer, Dordrecht, pp 79–94 Derivative for biocompatible cancer cell imaging. Dyes Pigments, 2017, 136, 17–23

    Chapter  Google Scholar 

  10. Lash TD (2011) Origin of aromatic character in Porphyrinoid systems. J Porphyrins Phthalocyanines 15:1093–1115

    Article  CAS  Google Scholar 

  11. Gouterman M (1961) Spectra of Porphyrins. J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  12. Gouterman M, Wagnière GH (1963) Spectra of porphyrins part II four orbital model. J Mol Spectrosc 11:108–127

    Article  CAS  Google Scholar 

  13. Lindsey JS (2015) De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 115:6534–6620

    Article  CAS  Google Scholar 

  14. Taniguchi M, Lindsey JS (2017) Synthetic chlorins, possible surrogates for chlorophylls, prepared by derivatization of porphyrins. Chem Rev 117:344–535

    Article  CAS  Google Scholar 

  15. Brückner C, Samankumara L, Ogikubo J (2012) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin sciences, vol 17. World Scientific, River Edge, NY, pp 1–112

    Google Scholar 

  16. Tamiaki H, Kunieda M (2011) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin sciences, vol 11. World Scientific Publishing, Hackensack, NJ/London/Singapore/Beijing/Shanghai/Hong-Kong/Taipei/Chennai, pp 223–285

    Google Scholar 

  17. Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WCW, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Mater 10:324–332

    Article  CAS  Google Scholar 

  18. Cao W, Ng KK, Corbin I, Zhang Z, Ding L, Chen J, Zheng G (2009) Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging. Bioconjug Chem 20:2023

    Article  CAS  Google Scholar 

  19. Sutton JM, Clarke OJ, Fernandez N, Boyle RWP (2002) Chlorin and bacteriochlorin isothiocyanates: useful reagents for the synthesis of photoactive conjugates. Bioconjug Chem 13:249–263

    Article  CAS  Google Scholar 

  20. Singh S, Aggarwal A, Thompson S, Tomé JPC, Zhu X, Samaroo D, Vinodu M, Gao R, Drain CM (2010) Bioconjug Chem 21:2136

    Article  CAS  Google Scholar 

  21. Liu M, Chen C-Y, Mandal AK, Chamdrashaker V, Evans-Storms RB, Pitner JB, Bocian DF, Holten D, Lindsey JS (2016) Bioconjugatable, PEGylated hydroporphyrins for photochemistry and photomedicine. Narrow-band, red-emitting chlorins. New J Chem 40:7721–7740

    Article  CAS  Google Scholar 

  22. Yu Z, Ptaszek M (2012) Multifunctional bacteriochlorins from selective palladium-coupling reactions. Org Lett 14:3708–3711

    Article  CAS  Google Scholar 

  23. Kee HL, Kirmaier C, Tang Q, Diers JR, Muthiah C, Taniguchi M, Laha JK, Ptaszek M, Lindsey JS, Bocian DF, Holten D (2007) Effects of substituents on synthetic analogs of chlorophylls. Part 1: synthesis, vibrational properties and excited-state decay characteristics. Photochem Photobiol 83:1110–1124

    Article  CAS  Google Scholar 

  24. Faries K;M, Diers JR, Springer JW, Yang E, Ptaszek M, Lahaye D, Krayer M, Taniguchi M, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2015) Photophysical properties and electronic structure of chlorin-imides: bridging the gap between chlorins and bacteriochlorins. J Phys Chem B 119:7503–7515

    Article  CAS  Google Scholar 

  25. Yang E, Kirmaier C, Krayer M, Taniguchi M, Kim H-J, Diers JR, Bocian DF, Lindsey JS, Holten D (2011) Photophysical properties and electronic structure of stable, tunable synthetic bacteriochlorins: extending the feature of native photosynthetic pigments. J Phys Chem B 115:10801–10816

    Article  CAS  Google Scholar 

  26. Strachan J-P, O’Shea DF, Balasubramanian T, Lindsey JS (2000) Rational synthesis of meso-substituted chlorin building blocks. J Org Chem 65:3160–3172

    Article  CAS  Google Scholar 

  27. Kee HL, Nothdurft R, Muthiah C, Diers JR, Fan D, Ptaszek M, Bocian DF, Lindsey JS, Culver JP, Holten D (2008) Examination of chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes. Photochem Photobiol 84:1061

    Article  CAS  Google Scholar 

  28. Kim H-J, Lindsey JS (2005) De novo synthesis of stable tetrahydroporphyrinic macrocycles: bacteriochlorins and a tetradehydrocorrin. J Org Chem 70:5475–5486

    Article  CAS  Google Scholar 

  29. Taniguchi M, Cramer DL, Bhise AD, Kee HL, Bocian DF, Holten D, Lindsey JS (2008) Accessing the near-infrared spectral region with stable, synthetic, wavelength-tunable bacteriochlorins. New J Chem 32:947–958

    Article  CAS  Google Scholar 

  30. Meares A, Santhanam N, Satraitis A, Yu Z, Ptaszek M (2015) Deep-red emissive BODIPY-chlorin arrays, excitable with green and deep-red light. J Org Chem 80:3858–3869

    Article  CAS  Google Scholar 

  31. Ra D, Gauger KA, Muthukumaran K, Balasubramanian B, Chandrashaker V, Taniguchi M, Yu Z, Talley DC, Ehudin M, Ptaszek M, Lindsey JS (2015) Progress towards synthetic chlorins with graded polarity, conjugatable substituents, and wavelength tunability. J Porphyrins Phthalocyanines 19:547–572

    Article  CAS  Google Scholar 

  32. Yu Z, Pancholi C, Bhagavathy GV, Kang HS, Nguyen JK, Ptaszek M (2014) Strongly conjugated hydroporphyrin dyads: extensive modification of hydroporphyrins’ properties by expanding the conjugated system. J Org Chem 79:7910–7925

    Article  Google Scholar 

  33. Vairaprakash P, Yang E, Sahin T, Taniguchi M, Krayer M, Diers JR, Wang A, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2015) Extending the short and long wavelength limits of bacteriochlorin near-infrared absorption via dioxo- and bisimide-functionalization. J Phys Chem B 119:4382–4395

    Article  CAS  Google Scholar 

  34. Huang Y-Y, Mroz P, Zhiyentayev T, Sharma SK, Balasubramanian T, Ruzié C, Krayer M, Fan D, Borbas KE, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) In vitro photodynamic therapy and quantitative structure – activity relationship studies with stable synthetic near-infrared-absorbing bacteriochlorin photosensitizers. J Med Chem 53:4018–4027

    Article  CAS  Google Scholar 

  35. Yu Z, Ptaszek M (2013) Near-IR emissive chlorin-bacteriochlorin energy-transfer dyads with a common donor and acceptors with tunable emission wavelength. J Org Chem 78:10678–10691

    Article  CAS  Google Scholar 

  36. Yang E, Ruzie C, Krayer M, Diers JR, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2013) Photophysical properties and electronic structure of bacteriochlorin-chalcones with extended near-infrared absorption. Photochem Photobiol 89:586–604

    Article  CAS  Google Scholar 

  37. Yung E, Zhang N, Krayer M, Taniguchi M, Diers JR, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2016) Integration of cyanine, merocyanine and styryl dye motifs with synthetic bacteriochlorins. Photochem Photobiol 92:111–125

    Article  Google Scholar 

  38. Chen C-Y, Sun E, Fan M, Taniguchi M, McDowell BE, Yang E, Diers JR, Bocian DF, Holten D, Lindsey JS (2011) Synthesis and physicochemical properties of metallobacteriochlorin. Inorg Chem 51:9443–9464

    Article  Google Scholar 

  39. Robinson BC (2000) Bacteriopurpurins: synthesis from meso-diacrylate substituted porphyrins. Tetrahedron 56:6005–6014

    Article  CAS  Google Scholar 

  40. Arnaut LG (2011) Design of porphyrin-based photosensitizers for photodynamic therapy. Adv Inorg Chem 63:167–233

    Google Scholar 

  41. Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362

    Article  CAS  Google Scholar 

  42. Grin MA, Mironov AF, Shtil AA (2008) Bacteriochlorophyll a and its derivatives: chemistry and perspectives for Cancer therapy. Anti Cancer Agents Med Chem 8:683

    Article  CAS  Google Scholar 

  43. Kobayashi H, Ogawa M, Choyke M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640

    Article  CAS  Google Scholar 

  44. Kobayashi H, Longmire MR, Ogawa M, Choyke PL (2011) Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 40:4626–4648

    Article  CAS  Google Scholar 

  45. Chen J, Stefflova K, Niedre M, Wilson BC, Chance B, Glickson JD, Zheng G (2004) Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J Am Chem Soc 126:11450–11451

    Article  CAS  Google Scholar 

  46. Zheng G, Chen J, Stefflova K, Jarvi M, Li H, Wilson BC (2007) Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc Nat Acad Sci 104:8989–8994

    Article  CAS  Google Scholar 

  47. Liu TW, Akens MK, Chen J, Wise-Milestone L, Wilson BC, Zheng G (2011) Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjug Chem 22:1021–1030

    Article  CAS  Google Scholar 

  48. Chen J, Liu TWB, Lo P-C, Wilson BC, Zheng G (2009) “Zipper” molecular beacons: a generalized strategy to optimize the performance of activatable protease probe. Bioconjug Chem 20:1836–1842

    Article  CAS  Google Scholar 

  49. Stefflova K, Chen J, Marotta D, Li H, Zheng G (2006) Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ. J Med Chem 49:3850–3856

    Article  CAS  Google Scholar 

  50. Lo P-C, Chen J, Stefflova K, Warren MS, Navab R, Bandarchi B, Mullins S, Tsao M, Cheng JD, Zheng G (2009) Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblast for diagnosis and treatment of epithelial cancers. J Med Chem 52:358–368

    Article  CAS  Google Scholar 

  51. Popov AV, Mawn TM, Kim S, Zheng G, Delikatny EJ (2010) Design and synthesis of phospholipase C and A2-activatable near-infrared fluorescent smart probes. Bioconjug Chem 21:1724–1727

    Article  CAS  Google Scholar 

  52. Mawn TM, Popov AV, Beardsley NJ, Stefflova K, Milkevitch M, Zheng G, Delikatny EJ (2011) In vivo detection of phospholipase C by enzyme-activated near-infrared probes. Bioconjug Chem 22:2434–2443

    Article  CAS  Google Scholar 

  53. Lovell JF, Chan MW, Qi Q, Chen J, Zheng G (2011) Porphyrin FRET acceptors for apoptosis induction and monitoring. J Am Chem Soc 133:18580–18582

    Article  CAS  Google Scholar 

  54. Nopondo EN, Yu Z, Wiratan L, Satraitis A, Ptaszek M (2016) Bacteriochlorin dyads as solvent polarity dependent near-infrared fluorophores and reactive oxygen species photosensitizers. Org Lett 18:4590–4593

    Article  Google Scholar 

  55. Zhang M, Zhang Z, Blessington D, Li H, Busch TM, Madrak V, Miles J, Chance B, Glickson JD, Zheng G (2003) Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporter. Bioconjug Chem 14:709–714

    Article  CAS  Google Scholar 

  56. Zheng G, Li H, Zhang M, Lund-Katz S, Chance B, Glickson JD (2002) Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl Oleate as target specific photosensitizer. Bioconjug Chem 13:392–396

    Article  CAS  Google Scholar 

  57. Stefflova K, Li H, Zheng G (2007) Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjug Chem 18:379–388

    Article  CAS  Google Scholar 

  58. Liu TWB, Chen J, Burgess L, Cao W, Shi J, Wilson BC, Zheng G (2011) Multimodal bacteriochlorophyll theranostic agent. Theranostics 1:354–362

    Article  CAS  Google Scholar 

  59. Li Y, Zhang F, Wang X-F, Chen G, Fu X, Tian W, Kitao O, Tamiaki H, Sasaki S i (2017) Pluronic micelle-encapsulated red-photoluminescent chlorophyll derivative for biocompatible cancer cell imaging. Dyes Pigments 136:17–23

    Article  CAS  Google Scholar 

  60. Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44(2):83–90

    Article  CAS  Google Scholar 

  61. Regino CAS, Ogawa M, Alford R, Wong KJ, Kosaka N, Williams M, Field BJ, Takahashi M, Choyke PL, Kobayashi H (2010) Two-step synthesis of galactosylated human serum albumin as a targeted optical imaging agent for peritoneal carcinomatosis. J Med Chem 53:1579–1586

    Article  CAS  Google Scholar 

  62. Vinita AM, Sano K, Yu Z, Nakajima T, Choyke P, Ptaszek M, Kobayashi H (2012) Galactosyl human serum albumin-NMP1 conjugate: a near infrared-near (NIR)-activatable fluorescence imaging agent to detect peritoneal ovarian cancer metastases. Bioconjug Chem 23:1671–1679

    Article  Google Scholar 

  63. Harada T, Sano K, Sato K, Watanabe R, Yu Z, Hanaoka H, Nakajima T, Choyke PL, Ptaszek M, Kabayashi H (2014) Activatable organic near-infrared fluorescent probes based on a bacteriochlorin platform: synthesis and multicolor in vivo imaging with a single excitation. Bioconjug Chem 25:362–369

    Article  CAS  Google Scholar 

  64. Akers W, Lesage F, Holten D, Achilefu S (2007) In vivo resolution of multiexponential decay of multiple near-infrared molecular probes by fluorescence lifetime-gated whole-body time-resolved diffuse optical imaging. Mol Imaging 6:237–246

    Article  CAS  Google Scholar 

  65. Fan J, Hu M, Zhan P, Peng X (2013) Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev 42:29–43

    Article  CAS  Google Scholar 

  66. Jiao G-S, Thoresen LH, Kim TG, Haaland WC, Gao F, Topp MR, Hochstrasser RM, Metzker ML, Burgess K (2006) Synthesis, photophysical properties and applications of through-bond energy-transfer cassettes for biotechnology. Chem Eur J 12:7616–7626

    Article  Google Scholar 

  67. Birks B (1970) Photophysics of aromatic molecules. Wiley Interscience, New York

    Google Scholar 

  68. Kee HL, Diers RJ, Ptaszek M, Muthiah C, Fan D, Bocian DF, Lindsey JS, Culver JP, Holten D (2009) Chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes: controlling charge-transfer and fluorescence properties in polar media. Photochem Photobiol 85:909–920

    Article  CAS  Google Scholar 

  69. Muthiah C, Kee HL, Diers JR, Fan D, Ptaszek M, Bocian DF, Holten D, Lindsey JS (2008) Synthesis and excited-state photodynamics of a chlorin-bacteriochlorin dyad: through-space versus through-bond energy transfer in tetrapyrrole arrays. Photochem Photobiol 84:786–801

    Article  CAS  Google Scholar 

  70. Ptaszek M, Kee HL, Muthiah C, Nothdurft R, Akers W, Achilefu C, Culver JP, Holten D (2010) Niear infrared imaging probes based on chlorin-bacteriochlorin dyads. SPIE-Int Soc Opt Eng 7576E:1–9

    Google Scholar 

  71. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: synthesis and spectroscopic properties. Chem Rev 107:4891–4932

    Article  CAS  Google Scholar 

  72. Meares A, Satraitis A, Akhigbe J, Santhanam N, Swaminathan S, Ehudin M, Ptaszek M (2017) Amphiphilic BODIPY-hydroporphyrin energy transfer arrays with broadly tunable absorption and deep red/near-infrared emission in aqueous micelles. J Org Chem 82:6054–6070

    Article  CAS  Google Scholar 

  73. Laakso J, Rosser GA, Szijjártó C, Beeby A, Borbas KE (2012) Synthesis of chlorin-sensitized near infrared-emitting lanthanide complexes. Inorg Chem 51:10366–10374

    Article  CAS  Google Scholar 

  74. Xiong R, Andres J, Scheffler K, Borbas KE (2015) Synthesis and characterization of lanthanide-hydroporphyrin dyads. Dalton Trans 44:2541–2553

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Author thanks National Cancer Institute of the National Institutes of Health (award U01CA181628) for supporting his work on near-IR fluorophores for in vivo imaging, and Mr. Adam Meares for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Ptaszek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ptaszek, M. (2018). Hydroporphyrins in Fluorescence In Vivo Imaging. In: Geddes, C. (eds) Reviews in Fluorescence 2017. Reviews in Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-030-01569-5_2

Download citation

Publish with us

Policies and ethics