Advertisement

18F-FDG PET/CT Indications, Pitfalls and Limitations in Brain Imaging

  • Stefan VööEmail author
  • Jamshed Bomanji
Chapter
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)

Abstract

18F-FDG PET/CT is currently the most useful and broadly used neuroimaging modality of global brain activity in neurologic patients. The images provide a tridimensional information on both cortical and subcortical structures allowing to consider brain activity in functional networks.

References

  1. 1.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14c]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.Google Scholar
  2. 2.
    Kennedy C, Des Rosiers MH, Sakurada O, Shinohara M, Reivich M, Jehle JW, Sokoloff L. Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14c]deoxyglucose technique. Proc Natl Acad Sci U S A. 1976;73:4230–4.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sokoloff L. Energetics of functional activation in neural tissues. Neurochem Res. 1999;24:321–9.PubMedGoogle Scholar
  4. 4.
    Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 2004;27:489–95.PubMedGoogle Scholar
  5. 5.
    Podoloff DA, Ball DW, Ben-Josef E, Benson AB III, Cohen SJ, Coleman RE, Delbeke D, Ho M, Ilson DH, Kalemkerian GP, Lee RJ, Loeffler JS, Macapinlac HA, Morgan RJ Jr, Siegel BA, Singhal S, Tyler DS, Wong RJ. NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Cancer Netw. 2009;7(Suppl 2):S1–26.Google Scholar
  6. 6.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, la Fougere C, Pope W, Law I, Arbizu J, Chamberlain MC, Vogelbaum M, Ellingson BM, Tonn JC. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology. 2016;18:1199–208.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J, Perneczky R, Clerici F, Caselli R, Beuthien-Baumann B, Kurz A, Minoshima S, de Leon MJ. Multicenter standardized 18F-Fdg PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49:390–8.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286:2120–7.PubMedGoogle Scholar
  9. 9.
    Kochunov P, Ramage AE, Lancaster JL, Robin DA, Narayana S, Coyle T, Royall DR, Fox P. Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. NeuroImage. 2009;45:17–28.PubMedGoogle Scholar
  10. 10.
    Ibanez V, Pietrini P, Furey ML, Alexander GE, Millet P, Bokde AL, Teichberg D, Schapiro MB, Horwitz B, Rapoport SI. Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging, after correction for brain atrophy. Brain Res Bull. 2004;63:147–54.PubMedGoogle Scholar
  11. 11.
    Ivancevic V, Alavi A, Souder E, Mozley PD, Gur RE, Benard F, Munz DL. Regional cerebral glucose metabolism in healthy volunteers determined by fluorodeoxyglucose positron emission tomography: appearance and variance in the transaxial, coronal, and sagittal planes. Clin Nucl Med. 2000;25:596–602.PubMedGoogle Scholar
  12. 12.
    Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 2014;9:129–40.PubMedGoogle Scholar
  13. 13.
    Ishii K, Sakamoto S, Hosaka K, Mori T, Sasaki M. Variation in FDG uptakes in different regions in normal human brain as a function of the time (30 and 60 minutes) after injection of FDG. Ann Nucl Med. 2002;16:299–301.PubMedGoogle Scholar
  14. 14.
    Sasaki H, Kanno I, Murakami M, Shishido F, Uemura K. Tomographic mapping of kinetic rate constants in the fluorodeoxyglucose model using dynamic positron emission tomography. J Cereb Blood Flow Metab. 1986;6:447–54.PubMedGoogle Scholar
  15. 15.
    Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22:487–97.PubMedGoogle Scholar
  16. 16.
    Kinnala A, Suhonen-Polvi H, Aarimaa T, Kero P, Korvenranta H, Ruotsalainen U, Bergman J, Haaparanta M, Solin O, Nuutila P, Wegelius U. Cerebral metabolic rate for glucose during the first six months of life: An FDG positron emission tomography study. Arch Dis Child Fetal Neonatal Ed. 1996;74:F153–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Garraux G, Salmon E, Degueldre C, Lemaire C, Laureys S, Franck G. Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. NeuroImage. 1999;10:149–62.PubMedGoogle Scholar
  18. 18.
    Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, Schonknecht P, Ito K, Mielke R, Kalbe E, Zundorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Desgranges B, Eustache F, Beuthien-Baumann B, Menzel C, Schroder J, Kato T, Arahata Y, Henze M, Heiss WD. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage. 2002;17:302–16.PubMedGoogle Scholar
  19. 19.
    Willis MW, Ketter TA, Kimbrell TA, George MS, Herscovitch P, Danielson AL, Benson BE, Post RM. Age, sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Res. 2002;114:23–37.PubMedGoogle Scholar
  20. 20.
    Fujimoto T, Matsumoto T, Fujita S, Takeuchi K, Nakamura K, Mitsuyama Y, Kato N. Changes in glucose metabolism due to aging and gender-related differences in the healthy human brain. Psychiatry Res. 2008;164:58–72.PubMedGoogle Scholar
  21. 21.
    Kalpouzos G, Chetelat G, Baron JC, Landeau B, Mevel K, Godeau C, Barre L, Constans JM, Viader F, Eustache F, Desgranges B. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging. 2009;30:112–24.PubMedGoogle Scholar
  22. 22.
    Kim IJ, Kim SJ, Kim YK. Age- and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography. Acta Radiol. 2009;50:1169–74.PubMedGoogle Scholar
  23. 23.
    Hsieh YJ, Cho CY. Age-related changes of arm movements in dual task condition when walking on different surfaces. Hum Mov Sci. 2012;31:190–201.PubMedGoogle Scholar
  24. 24.
    Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, Munch KR, Carlis JV, Lewis SM, Kuskowski MA, Dysken MW. Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. NeuroImage. 2007;35:1231–7.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Brickman AM, Buchsbaum MS, Shihabuddin L, Hazlett EA, Borod JC, Mohs RC. Striatal size, glucose metabolic rate, and verbal learning in normal aging. Brain Res Cogn Brain Res. 2003;17:106–16.PubMedGoogle Scholar
  26. 26.
    Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, de Leon MJ. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36:811–22.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62:847–55.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Reiman EM, Armstrong SM, Matt KS, Mattox JH. The application of positron emission tomography to the study of the normal menstrual cycle. Hum Reprod. 1996;11:2799–805.PubMedGoogle Scholar
  29. 29.
    Miura SA, Schapiro MB, Grady CL, Kumar A, Salerno JA, Kozachuk WE, Wagner E, Rapoport SI, Horwitz B. Effect of gender on glucose utilization rates in healthy humans: a positron emission tomography study. J Neurosci Res. 1990;27:500–4.PubMedGoogle Scholar
  30. 30.
    Chen Y, Parrish TB. Caffeine’s effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. NeuroImage. 2009;44:647–52.PubMedGoogle Scholar
  31. 31.
    Volkow ND, Hitzemann R, Wolf AP, Logan J, Fowler JS, Christman D, Dewey SL, Schlyer D, Burr G, Vitkun S, et al. Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res. 1990;35:39–48.PubMedGoogle Scholar
  32. 32.
    Zhu W, Volkow ND, Ma Y, Fowler JS, Wang GJ. Relationship between ethanol-induced changes in brain regional metabolism and its motor, behavioural and cognitive effects. Alcohol Alcohol. 2004;39:53–8.PubMedGoogle Scholar
  33. 33.
    Volkow ND, Wang GJ, Franceschi D, Fowler JS, Thanos PP, Maynard L, Gatley SJ, Wong C, Veech RL, Kunos G, Kai Li T. Low doses of alcohol substantially decrease glucose metabolism in the human brain. NeuroImage. 2006;29:295–301.PubMedGoogle Scholar
  34. 34.
    Wolkin A, Angrist B, Wolf A, Brodie J, Wolkin B, Jaeger J, Cancro R, Rotrosen J. Effects of amphetamine on local cerebral metabolism in normal and schizophrenic subjects as determined by positron emission tomography. Psychopharmacology. 1987;92:241–6.PubMedGoogle Scholar
  35. 35.
    Vollenweider FX, Maguire RP, Leenders KL, Mathys K, Angst J. Effects of high amphetamine dose on mood and cerebral glucose metabolism in normal volunteers using positron emission tomography (PET). Psychiatry Res. 1998;83:149–62.PubMedGoogle Scholar
  36. 36.
    Henry PK, Murnane KS, Votaw JR, Howell LL. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav. 2010;4:212–9.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Roelcke U, Blasberg RG, von Ammon K, Hofer S, Vontobel P, Maguire RP, Radu EW, Herrmann R, Leenders KL. Dexamethasone treatment and plasma glucose levels: relevance for fluorine-18-fluorodeoxyglucose uptake measurements in gliomas. J Nucl Med. 1998;39:879–84.PubMedGoogle Scholar
  38. 38.
    Wang GJ, Volkow ND, Levy AV, Felder CA, Fowler JS, Pappas NR, Hitzemann RJ, Wong CT. Measuring reproducibility of regional brain metabolic responses to lorazepam using statistical parametric maps. J Nucl Med. 1999;40:715–20.PubMedGoogle Scholar
  39. 39.
    Silverman DH, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, Waddell K, Petersen L, Phelps ME, Ganz PA. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103:303–11.PubMedGoogle Scholar
  40. 40.
    Simo M, Rifa-Ros X, Rodriguez-Fornells A, Bruna J. Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37:1311–21.PubMedGoogle Scholar
  41. 41.
    Kesner AL, Lau VK, Speiser M, Hsueh WA, Agazaryan N, DeMarco JJ, Czernin J, Silverman DH. Time-course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow. J Appl Clin Med Phys. 2008;9:2747.PubMedGoogle Scholar
  42. 42.
    Montgomery AJ, Thielemans K, Mehta MA, Turkheimer F, Mustafovic S, Grasby PM. Correction of head movement on PET studies: comparison of methods. J Nucl Med. 2006;47:1936–44.PubMedGoogle Scholar
  43. 43.
    Salmon E, Bernard Ir C, Hustinx R. Pitfalls and limitations of PET/CT in brain imaging. Semin Nucl Med. 2015;45:541–51.PubMedGoogle Scholar
  44. 44.
    Khurshid K, Berger KL, McGough RJ. Automated PET/CT brain registration for accurate attenuation correction. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5805–8.PubMedGoogle Scholar
  45. 45.
    Almodovar S, White SL, Modarresifar H, Ojha BC. The usefulness of calculated attenuation correction in the evaluation of metallic artifacts on brain PET/CT imaging. Clin Nucl Med. 2006;31:554–5.PubMedGoogle Scholar
  46. 46.
    Lemmens C, Montandon ML, Nuyts J, Ratib O, Dupont P, Zaidi H. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging. Phys Med Biol. 2008;53:4417–29.PubMedGoogle Scholar
  47. 47.
    Son YD, Kim HK, Kim ST, Kim NB, Kim YB, Cho ZH. Analysis of biased PET images caused by inaccurate attenuation coefficients. J Nucl Med. 2010;51:753–60.PubMedGoogle Scholar
  48. 48.
    Keller SH, Sibomana M, Olesen OV, Svarer C, Holm S, Andersen FL, Hojgaard L. Methods for motion correction evaluation using 18F-FDG human brain scans on a high-resolution PET scanner. J Nucl Med. 2012;53:495–504.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Nuclear MedicineUniversity College London Hospitals NHS Foundation TrustLondonUK

Personalised recommendations