Skip to main content

18F-FDG PET/CT Indications, Pitfalls and Limitations in Brain Imaging

  • Chapter
  • First Online:
PET/CT in Brain Disorders

Part of the book series: Clinicians’ Guides to Radionuclide Hybrid Imaging ((PET/CT))

Abstract

18F-FDG PET/CT is currently the most useful and broadly used neuroimaging modality of global brain activity in neurologic patients. The images provide a tridimensional information on both cortical and subcortical structures allowing to consider brain activity in functional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14c]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.

    CAS  Google Scholar 

  2. Kennedy C, Des Rosiers MH, Sakurada O, Shinohara M, Reivich M, Jehle JW, Sokoloff L. Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14c]deoxyglucose technique. Proc Natl Acad Sci U S A. 1976;73:4230–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sokoloff L. Energetics of functional activation in neural tissues. Neurochem Res. 1999;24:321–9.

    CAS  PubMed  Google Scholar 

  4. Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 2004;27:489–95.

    CAS  PubMed  Google Scholar 

  5. Podoloff DA, Ball DW, Ben-Josef E, Benson AB III, Cohen SJ, Coleman RE, Delbeke D, Ho M, Ilson DH, Kalemkerian GP, Lee RJ, Loeffler JS, Macapinlac HA, Morgan RJ Jr, Siegel BA, Singhal S, Tyler DS, Wong RJ. NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Cancer Netw. 2009;7(Suppl 2):S1–26.

    Google Scholar 

  6. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, la Fougere C, Pope W, Law I, Arbizu J, Chamberlain MC, Vogelbaum M, Ellingson BM, Tonn JC. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology. 2016;18:1199–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J, Perneczky R, Clerici F, Caselli R, Beuthien-Baumann B, Kurz A, Minoshima S, de Leon MJ. Multicenter standardized 18F-Fdg PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49:390–8.

    PubMed  PubMed Central  Google Scholar 

  8. Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286:2120–7.

    CAS  PubMed  Google Scholar 

  9. Kochunov P, Ramage AE, Lancaster JL, Robin DA, Narayana S, Coyle T, Royall DR, Fox P. Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. NeuroImage. 2009;45:17–28.

    CAS  PubMed  Google Scholar 

  10. Ibanez V, Pietrini P, Furey ML, Alexander GE, Millet P, Bokde AL, Teichberg D, Schapiro MB, Horwitz B, Rapoport SI. Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging, after correction for brain atrophy. Brain Res Bull. 2004;63:147–54.

    CAS  PubMed  Google Scholar 

  11. Ivancevic V, Alavi A, Souder E, Mozley PD, Gur RE, Benard F, Munz DL. Regional cerebral glucose metabolism in healthy volunteers determined by fluorodeoxyglucose positron emission tomography: appearance and variance in the transaxial, coronal, and sagittal planes. Clin Nucl Med. 2000;25:596–602.

    CAS  PubMed  Google Scholar 

  12. Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 2014;9:129–40.

    PubMed  Google Scholar 

  13. Ishii K, Sakamoto S, Hosaka K, Mori T, Sasaki M. Variation in FDG uptakes in different regions in normal human brain as a function of the time (30 and 60 minutes) after injection of FDG. Ann Nucl Med. 2002;16:299–301.

    CAS  PubMed  Google Scholar 

  14. Sasaki H, Kanno I, Murakami M, Shishido F, Uemura K. Tomographic mapping of kinetic rate constants in the fluorodeoxyglucose model using dynamic positron emission tomography. J Cereb Blood Flow Metab. 1986;6:447–54.

    CAS  PubMed  Google Scholar 

  15. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22:487–97.

    CAS  PubMed  Google Scholar 

  16. Kinnala A, Suhonen-Polvi H, Aarimaa T, Kero P, Korvenranta H, Ruotsalainen U, Bergman J, Haaparanta M, Solin O, Nuutila P, Wegelius U. Cerebral metabolic rate for glucose during the first six months of life: An FDG positron emission tomography study. Arch Dis Child Fetal Neonatal Ed. 1996;74:F153–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Garraux G, Salmon E, Degueldre C, Lemaire C, Laureys S, Franck G. Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. NeuroImage. 1999;10:149–62.

    CAS  PubMed  Google Scholar 

  18. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, Schonknecht P, Ito K, Mielke R, Kalbe E, Zundorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Desgranges B, Eustache F, Beuthien-Baumann B, Menzel C, Schroder J, Kato T, Arahata Y, Henze M, Heiss WD. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage. 2002;17:302–16.

    CAS  PubMed  Google Scholar 

  19. Willis MW, Ketter TA, Kimbrell TA, George MS, Herscovitch P, Danielson AL, Benson BE, Post RM. Age, sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Res. 2002;114:23–37.

    CAS  PubMed  Google Scholar 

  20. Fujimoto T, Matsumoto T, Fujita S, Takeuchi K, Nakamura K, Mitsuyama Y, Kato N. Changes in glucose metabolism due to aging and gender-related differences in the healthy human brain. Psychiatry Res. 2008;164:58–72.

    CAS  PubMed  Google Scholar 

  21. Kalpouzos G, Chetelat G, Baron JC, Landeau B, Mevel K, Godeau C, Barre L, Constans JM, Viader F, Eustache F, Desgranges B. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging. 2009;30:112–24.

    CAS  PubMed  Google Scholar 

  22. Kim IJ, Kim SJ, Kim YK. Age- and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography. Acta Radiol. 2009;50:1169–74.

    PubMed  Google Scholar 

  23. Hsieh YJ, Cho CY. Age-related changes of arm movements in dual task condition when walking on different surfaces. Hum Mov Sci. 2012;31:190–201.

    PubMed  Google Scholar 

  24. Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, Munch KR, Carlis JV, Lewis SM, Kuskowski MA, Dysken MW. Where the brain grows old: decline in anterior cingulate and medial prefrontal function with normal aging. NeuroImage. 2007;35:1231–7.

    PubMed  PubMed Central  Google Scholar 

  25. Brickman AM, Buchsbaum MS, Shihabuddin L, Hazlett EA, Borod JC, Mohs RC. Striatal size, glucose metabolic rate, and verbal learning in normal aging. Brain Res Cogn Brain Res. 2003;17:106–16.

    CAS  PubMed  Google Scholar 

  26. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, de Leon MJ. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36:811–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62:847–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reiman EM, Armstrong SM, Matt KS, Mattox JH. The application of positron emission tomography to the study of the normal menstrual cycle. Hum Reprod. 1996;11:2799–805.

    CAS  PubMed  Google Scholar 

  29. Miura SA, Schapiro MB, Grady CL, Kumar A, Salerno JA, Kozachuk WE, Wagner E, Rapoport SI, Horwitz B. Effect of gender on glucose utilization rates in healthy humans: a positron emission tomography study. J Neurosci Res. 1990;27:500–4.

    CAS  PubMed  Google Scholar 

  30. Chen Y, Parrish TB. Caffeine’s effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. NeuroImage. 2009;44:647–52.

    PubMed  Google Scholar 

  31. Volkow ND, Hitzemann R, Wolf AP, Logan J, Fowler JS, Christman D, Dewey SL, Schlyer D, Burr G, Vitkun S, et al. Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res. 1990;35:39–48.

    CAS  PubMed  Google Scholar 

  32. Zhu W, Volkow ND, Ma Y, Fowler JS, Wang GJ. Relationship between ethanol-induced changes in brain regional metabolism and its motor, behavioural and cognitive effects. Alcohol Alcohol. 2004;39:53–8.

    CAS  PubMed  Google Scholar 

  33. Volkow ND, Wang GJ, Franceschi D, Fowler JS, Thanos PP, Maynard L, Gatley SJ, Wong C, Veech RL, Kunos G, Kai Li T. Low doses of alcohol substantially decrease glucose metabolism in the human brain. NeuroImage. 2006;29:295–301.

    PubMed  Google Scholar 

  34. Wolkin A, Angrist B, Wolf A, Brodie J, Wolkin B, Jaeger J, Cancro R, Rotrosen J. Effects of amphetamine on local cerebral metabolism in normal and schizophrenic subjects as determined by positron emission tomography. Psychopharmacology. 1987;92:241–6.

    CAS  PubMed  Google Scholar 

  35. Vollenweider FX, Maguire RP, Leenders KL, Mathys K, Angst J. Effects of high amphetamine dose on mood and cerebral glucose metabolism in normal volunteers using positron emission tomography (PET). Psychiatry Res. 1998;83:149–62.

    CAS  PubMed  Google Scholar 

  36. Henry PK, Murnane KS, Votaw JR, Howell LL. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav. 2010;4:212–9.

    PubMed  PubMed Central  Google Scholar 

  37. Roelcke U, Blasberg RG, von Ammon K, Hofer S, Vontobel P, Maguire RP, Radu EW, Herrmann R, Leenders KL. Dexamethasone treatment and plasma glucose levels: relevance for fluorine-18-fluorodeoxyglucose uptake measurements in gliomas. J Nucl Med. 1998;39:879–84.

    CAS  PubMed  Google Scholar 

  38. Wang GJ, Volkow ND, Levy AV, Felder CA, Fowler JS, Pappas NR, Hitzemann RJ, Wong CT. Measuring reproducibility of regional brain metabolic responses to lorazepam using statistical parametric maps. J Nucl Med. 1999;40:715–20.

    CAS  PubMed  Google Scholar 

  39. Silverman DH, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, Waddell K, Petersen L, Phelps ME, Ganz PA. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103:303–11.

    CAS  PubMed  Google Scholar 

  40. Simo M, Rifa-Ros X, Rodriguez-Fornells A, Bruna J. Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37:1311–21.

    PubMed  Google Scholar 

  41. Kesner AL, Lau VK, Speiser M, Hsueh WA, Agazaryan N, DeMarco JJ, Czernin J, Silverman DH. Time-course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow. J Appl Clin Med Phys. 2008;9:2747.

    PubMed  Google Scholar 

  42. Montgomery AJ, Thielemans K, Mehta MA, Turkheimer F, Mustafovic S, Grasby PM. Correction of head movement on PET studies: comparison of methods. J Nucl Med. 2006;47:1936–44.

    PubMed  Google Scholar 

  43. Salmon E, Bernard Ir C, Hustinx R. Pitfalls and limitations of PET/CT in brain imaging. Semin Nucl Med. 2015;45:541–51.

    PubMed  Google Scholar 

  44. Khurshid K, Berger KL, McGough RJ. Automated PET/CT brain registration for accurate attenuation correction. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5805–8.

    PubMed  Google Scholar 

  45. Almodovar S, White SL, Modarresifar H, Ojha BC. The usefulness of calculated attenuation correction in the evaluation of metallic artifacts on brain PET/CT imaging. Clin Nucl Med. 2006;31:554–5.

    PubMed  Google Scholar 

  46. Lemmens C, Montandon ML, Nuyts J, Ratib O, Dupont P, Zaidi H. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging. Phys Med Biol. 2008;53:4417–29.

    PubMed  Google Scholar 

  47. Son YD, Kim HK, Kim ST, Kim NB, Kim YB, Cho ZH. Analysis of biased PET images caused by inaccurate attenuation coefficients. J Nucl Med. 2010;51:753–60.

    PubMed  Google Scholar 

  48. Keller SH, Sibomana M, Olesen OV, Svarer C, Holm S, Andersen FL, Hojgaard L. Methods for motion correction evaluation using 18F-FDG human brain scans on a high-resolution PET scanner. J Nucl Med. 2012;53:495–504.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Vöö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vöö, S., Bomanji, J. (2019). 18F-FDG PET/CT Indications, Pitfalls and Limitations in Brain Imaging. In: Fraioli, F. (eds) PET/CT in Brain Disorders. Clinicians’ Guides to Radionuclide Hybrid Imaging(). Springer, Cham. https://doi.org/10.1007/978-3-030-01523-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01523-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01522-0

  • Online ISBN: 978-3-030-01523-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics