Advertisement

PET in Neuro-Oncology

  • Francesco FraioliEmail author
Chapter
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)

Abstract

Gliomas account for 80% of all intrinsic primary brain tumours, including several subtypes with different prognoses [1]. Histological characterisation following the World Health Organisation (WHO) groups gliomas on cell origin (astrocytoma, oligodendroglioma), with assessment of pathological features of malignancy. Low-grade gliomas (LGG, WHO grades I–II) show a better prognosis than high-grade gliomas (HGG, WHO grade III–IV) [2].

References

  1. 1.
    Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Miyake K, Ogawa D, Okada M, Hatakeyama T, Tamiya T. Usefulness of positron emission tomographic studies for gliomas. Neurol Med Chir (Tokyo). 2016;56(7):396–408.Google Scholar
  3. 3.
    Brandner S, von Deimling A. Diagnostic, prognostic and predictive relevance of molecular markers in gliomas. Neuropathol Appl Neurobiol. 2015;41(6):694–720.PubMedGoogle Scholar
  4. 4.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedGoogle Scholar
  5. 5.
    Hutterer M, Nowosielski M, Putzer D, Jansen NL, Seiz M, Schocke M, et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol. 2013;15(3):341–51.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Janvier L, Olivier P, Blonski M, Morel O, Vignaud J-M, Karcher G, et al. Correlation of SUV-derived indices with tumoral aggressiveness of gliomas in static 18F-FDOPA PET: use in clinical practice. Clin Nucl Med. 2015;40(9):e429–35.PubMedGoogle Scholar
  7. 7.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18(9):1199–208.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H. 18F-FDG PET of common enhancing malignant brain tumors. AJR Am J Roentgenol. 2008;190(6):W365–9.PubMedGoogle Scholar
  9. 9.
    Makino K, Hirai T, Nakamura H, Murakami R, Kitajima M, Shigematsu Y, et al. Does adding FDG-PET to MRI improve the differentiation between primary cerebral lymphoma and glioblastoma? Observer performance study. Ann Nucl Med. 2011;25(6):432–8.PubMedGoogle Scholar
  10. 10.
    Okada Y, Nihashi T, Fujii M, Kato K, Okochi Y, Ando Y, et al. Differentiation of newly diagnosed glioblastoma multiforme and intracranial diffuse large B-cell Lymphoma using (11)C-methionine and (18)F-FDG PET. Clin Nucl Med. 2012;37(9):843–9.PubMedGoogle Scholar
  11. 11.
    Dunet V, Rossier C, Buck A, Stupp R, Prior JO. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med. 2012;53(2):207–14.PubMedGoogle Scholar
  12. 12.
    Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol. 2016;18(3):426–34.PubMedGoogle Scholar
  13. 13.
    Rapp M, Heinzel A, Galldiks N, Stoffels G, Felsberg J, Ewelt C, et al. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med. 2013;54(2):229–35.PubMedGoogle Scholar
  14. 14.
    Bell C, Dowson N, Puttick S, Gal Y, Thomas P, Fay M, et al. Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl Med Biol. 2015;42(10):788–95.PubMedGoogle Scholar
  15. 15.
    Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. Am J Neuroradiol. 2008;29(6):1176–82.PubMedGoogle Scholar
  16. 16.
    Rottenburger C, Hentschel M, Kelly T, Trippel M, Brink I, Reithmeier T, et al. Comparison of C-11 methionine and C-11 choline for PET imaging of brain metastases: a prospective pilot study. Clin Nucl Med. 2011;36(8):639–42.PubMedGoogle Scholar
  17. 17.
    Wagner M, Seitz U, Buck A, Neumaier B, Schultheiss S, Bangerter M, et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res. 2003;63(10):2681–7.PubMedGoogle Scholar
  18. 18.
    Jacobs AH, Thomas A, Kracht LW. 18-F-3-Fluoro-3-deoxy-thymidine and 11C-methyilmetionine as markers of increased transport and proliferation in brain tumor. J Nucl Med. 2005;46(12):1948–59.PubMedGoogle Scholar
  19. 19.
    Gulyas B, Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging. 2012;56(2):173–90.PubMedGoogle Scholar
  20. 20.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.PubMedGoogle Scholar
  21. 21.
    Kato T, Shinoda J, Oka N, Miwa K, Nakayama N, Yano H, et al. Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. AJNR Am J Neuroradiol. 2008;29(10):1867–71.PubMedGoogle Scholar
  22. 22.
    Lapa C, Linsenmann T, Monoranu CM, Samnick S, Buck AK, Bluemel C, et al. Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55(10):1611–6.PubMedGoogle Scholar
  23. 23.
    Pichler R, Dunzinger A, Wurm G, Pichler J, Weis S, Nussbaumer K, et al. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur J Nucl Med Mol Imaging. 2010;37(8):1521–8.PubMedGoogle Scholar
  24. 24.
    Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with key words. J Nucl Med. 2005;46:945–52.PubMedGoogle Scholar
  25. 25.
    Glaudemans AWJM, Enting RH, Heesters MAAM, Dierckx RAJO, van Rheenen RWJ, Walenkamp AME, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.PubMedGoogle Scholar
  26. 26.
    Takano K, Kinoshita M, Arita H, Okita Y, Chiba Y, Kagawa N, et al. Diagnostic and prognostic value of 11C-methionine PET for nonenhancing gliomas. AJNR Am J Neuroradiol. 2016;37(1):44–50.PubMedGoogle Scholar
  27. 27.
    Juhász C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Energy. 2010;81(13):5218–25.Google Scholar
  28. 28.
    Yamamoto Y, Ono Y, Aga F, Kawai N, Kudomi N, Nishiyama Y. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med. 2012;53(12):1911–5.PubMedGoogle Scholar
  29. 29.
    Gempt J, Bette S, Ryang Y-M, Buchmann N, Peschke P, Pyka T, et al. 18F-fluoro-ethyl-tyrosine positron emission tomography for grading and estimation of prognosis in patients with intracranial gliomas. Eur J Radiol. 2015;84(5):955–62.PubMedGoogle Scholar
  30. 30.
    Grierson JR, Shields AF. Radiosynthesis of 3Ј-Deoxy-3Ј-[18F] fluorothymidine: [18F] FLT for imaging of cellular proliferation in vivo. Science. 2000;27(99):143–56.Google Scholar
  31. 31.
    Barthel H, Perumal M, Latigo J, He Q, Brady F, Luthra SK, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging. 2005;32(3):257–63.PubMedGoogle Scholar
  32. 32.
    Jeong SY, Lim SM. Comparison of 3′-deoxy-3′-[18F]fluorothymidine PET and O-(2-[18F]fluoroethyl)-L-tyrosine PET in patients with newly diagnosed glioma. Nucl Med Biol. 2012;39(7):977–81.PubMedGoogle Scholar
  33. 33.
    Buck AK, Schirrmeister H, Hetzel M, Von Der Heide M, Halter G, Glatting G, et al. 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res. 2002;62(12):3331–4.Google Scholar
  34. 34.
    Galldiks N, Langen K-J, Pope WB. From the clinician’s point of view - what is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol. 2015;17(11):1434–44.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol. 2009;6(11):648–57.PubMedGoogle Scholar
  36. 36.
    Cobben DCP, Jager PL, Elsinga PH, Maas B, Suurmeijer AJH, Hoekstra HJ. 3’-18F-fluoro-3′-deoxy-L-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med. 2003;44(12):1927–32.PubMedGoogle Scholar
  37. 37.
    Francis DL, Visvikis D, Costa DC, Arulampalam THA, Townsend C, Luthra SK, et al. Potential impact of [18F]3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging. 2003;30(7):988–94.PubMedGoogle Scholar
  38. 38.
    Giovannini E, Lazzeri P, Milano A, Gaeta MC, Ciarmiello A. Clinical applications of choline PET/CT in brain tumors. Curr Pharm Des. 2015;21(1):121–7.PubMedGoogle Scholar
  39. 39.
    Li W, Ma L, Wang X, Sun J, Wang S, Hu X. (11)C-choline PET/CT tumor recurrence detection and survival prediction in post-treatment patients with high-grade gliomas. Tumour Biol. 2014;35(12):12353–60.PubMedGoogle Scholar
  40. 40.
    Seung JC, Jae SK, Jeong HK, Seung JO, Jeong GL, Chang JK, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging. 2005;32(6):653–9.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Nuclear MedicineUniversity College LondonLondonUK

Personalised recommendations