[18F]FDG-PET/CT in Movement Disorders

  • Patrik FazioEmail author
  • Andrea Varrone
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)


Movement disorders are defined as neurologic syndromes in which there is either an excess of movement or a scarcity of voluntary and automatic movements, unrelated to weakness or spasticity [1]. Movement disorders are related to dysfunction of different nervous system structures involved in the modulation and regulation of movement. Among them the basal ganglia, cerebellum, cortex, and different thalamic nuclei represent the dynamic assembly that is differently impaired in movement disorder syndromes. The broad set of functions regulated by those neuronal circuits may explain the variability and richness of clinical signs in different domains expressed by patients with movement disorders. Different neurodegenerative or acquired central nervous system diseases that affect any part of this circuitry may cause movement disorders, which in many of the cases are of neurodegenerative nature. From a classification perspective, movement disorders are classified by the clinical phenomenology of the movement disorders (parkinsonian syndromes, tremor, chorea, myoclonia, dystonia, and ataxias) and are grossly subdivided in hypokinetic and hyperkinetic movement disorders.


  1. 1.
    Fahn S. Classification of movement disorders. Mov Disord. 2011;26:947–57.PubMedGoogle Scholar
  2. 2.
    Meyer PT, Frings L, Rücker G, Hellwig S. 18F-FDG PET in parkinsonism: differential diagnosis and cognitive impairment in Parkinson’s disease. J Nucl Med. 2017b;58:1888–98.PubMedGoogle Scholar
  3. 3.
    Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86: 566–76.PubMedGoogle Scholar
  4. 4.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Tang CC, Poston KL, Eckert T, Feigin A, Frucht S, Gudesblatt M, et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 2010;9:149–58.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140:1959–76.PubMedGoogle Scholar
  7. 7.
    Jellinger KA. The pathomechanisms underlying Parkinson’s disease. [Internet]. Expert Rev Neurother. 2014b;14:199–215.PubMedGoogle Scholar
  8. 8.
    Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab. 1994;14:783–801.PubMedGoogle Scholar
  9. 9.
    Tripathi M, Dhawan V, Peng S. Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013;55:483–92.PubMedGoogle Scholar
  10. 10.
    Firbank MJ, Yarnall AJ, Lawson RA, Duncan GW, Khoo TK, Petrides GS, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study. J Neurol Neurosurg Psychiatry. 2017;88:310–6.PubMedGoogle Scholar
  11. 11.
    Teune LK, Bartels AL, De Jong BM, Willemsen ATM, Eshuis SA, De Vries JJ, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord. 2010;25:2395–404.PubMedGoogle Scholar
  12. 12.
    Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. [Internet]. Lancet Neurol. 2007;6:926–32.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage. 2005;26:912–21.PubMedGoogle Scholar
  14. 14.
    Teune LK, Renken RJ, Mudali D, De Jong BM, Dierckx RA, Roerdink JBTM, et al. Validation of parkinsonian disease-related metabolic brain patterns. Mov Disord. 2013;28:547–51.PubMedGoogle Scholar
  15. 15.
    Ma Y, Tang C, Spetsieris PG, Dhawan V, Eidelberg D. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J Cereb Blood Flow Metab. 2007;27:597–605.PubMedGoogle Scholar
  16. 16.
    Tomše P, Jensterle L, Grmek M, Zaletel K, Pirtošek Z, Dhawan V, et al. Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample. Neuroradiology. 2017;59:507–15.PubMedGoogle Scholar
  17. 17.
    Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130:1834–46.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ko JH, Lee CS, Eidelberg D. Metabolic network expression in parkinsonism: clinical and dopaminergic correlations. J Cereb Blood Flow Metab. 2017;37:683–93.PubMedGoogle Scholar
  19. 19.
    Meyer PT, Frings L, Gerta R, Hellwig S. PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med. 2017a;58:1888–99.PubMedGoogle Scholar
  20. 20.
    Meles SK, Renken RJ, Janzen AHO, Vadasz D, Pagani M, Arnaldi D, et al. The metabolic pattern of idiopathic REM sleep behavior disorder reflects early-stage Parkinson’s disease. J Nucl Med. 2018;59:1437–44.PubMedGoogle Scholar
  21. 21.
    Kalbe E, Voges J, Weber T, Haarer M, Baudrexel S, Klein JC, et al. Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology. 2009;72:42–9.PubMedGoogle Scholar
  22. 22.
    Cao C, Zhang H, Li D, Zhan S, Zhang J, Zhang X, et al. Modified fluorodeoxyglucose metabolism in motor circuitry by subthalamic deep brain stimulation. Stereotact Funct Neurosurg. 2017;95:93–101.PubMedGoogle Scholar
  23. 23.
    Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52:848–55.PubMedGoogle Scholar
  24. 24.
    Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. [Internet]. Neurology. 2008;71:670–6.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Jellinger KA. Neuropathology of multiple system atrophy: new thoughts about pathogenesis. Mov Disord. 2014a;29:1720–41.PubMedGoogle Scholar
  26. 26.
    Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Höglinger GU. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 2017;16:552–63.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32:853–64.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Ling H, O’Sullivan SS, Holton JL, Revesz T, Massey LA, Williams DR, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain. 2010;133:2045–57.PubMedGoogle Scholar
  29. 29.
    Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wakabayashi K, Takahashi H. Symposium: Neuropathological diagnostic criteria and problems of neurodegenerative disorders. Pathological heterogeneity in progressive supranuclear palsy and corticobasal degeneration. Ann Neurol. 2004;24:79–86.Google Scholar
  31. 31.
    Dugger BN, Adler CH, Shill HA, Caviness J, Jacobson S, Driver-Dunckley E, et al. Concomitant pathologies among a spectrum of parkinsonian disorders. Parkinsonism Relat Disord. 2014;20:525–9.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Dickson DW, Ahmed Z, Algom AA, Tsuboi Y, Josephs KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol. 2010;23:394–400.PubMedGoogle Scholar
  33. 33.
    Boeve BF, Maraganore DM, Parisi JE, Ahlskog JE, Graff-Radford N, Caselli RJ, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology. 1999;53:795–800.PubMedGoogle Scholar
  34. 34.
    Zalewski N, Botha H, Whitwell JL, Lowe V, Dickson DW, Josephs KA. FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. J Neurol. 2014;261:710–6.PubMedGoogle Scholar
  35. 35.
    Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10:204–16.PubMedGoogle Scholar
  36. 36.
    Vonsattel JPG, Keller C, Cortes Ramirez EP. Huntington’s disease - neuropathology. 1st ed. Amsterdam: Elsevier B.V.; 2011.Google Scholar
  37. 37.
    Rüb U, Hentschel M, Stratmann K, Brunt E, Heinsen H, Seidel K, et al. Huntington’s disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol. 2014;24:247–60.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Rüb U, Seidel K, Heinsen H, Vonsattel JP, den Dunnen WF, Korf HW. Huntington’s disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol. 2016;26:726–40.PubMedGoogle Scholar
  39. 39.
    Antonini A, Leenders KL, Spiegel R, Meier D, Vontobel P, Weigell-Weber M, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain. 1996;119(Pt 6):2085–95.PubMedGoogle Scholar
  40. 40.
    López-Mora DA, Camacho V, Pérez-Pérez J, Martínez-Horta S, Fernández A, Sampedro F, et al. Striatal hypometabolism in premanifest and manifest Huntington’s disease patients [Internet]. Eur J Nucl Med Mol Imaging. 2016;43:2183–9.PubMedGoogle Scholar
  41. 41.
    Young AB, Penney JB, Starosta-rubinstein S, Markel DS, Berent S, Giordani B, et al. PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol. 1986;20:296–303.PubMedGoogle Scholar
  42. 42.
    Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med. 2006;47:215–22.PubMedGoogle Scholar
  43. 43.
    Tang CC, Feigin A, Ma Y, Habeck C, Paulsen JS, Leenders KL, et al. Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest. 2013;123:4076–88.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Berent S, Giordani B, Lehtinen S, Markel D, Penney JB, Buchtel HA, et al. Positron emission tomographic scan investigations of Huntington’s disease: cerebral metabolic correlates of cognitive function. Ann Neurol. 1988;23:541–6.PubMedGoogle Scholar
  45. 45.
    Ciarmiello A, Giovacchini G, Orobello S, Bruselli L, Elifani F, Squitieri F. 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging. 2012;39:1030–6.PubMedGoogle Scholar
  46. 46.
    Martino D, Stamelou M, Bhatia KP. The differential diagnosis of Huntington’s disease-like syndromes: ‘red flags’ for the clinician. J Neurol Neurosurg Psychiatry. 2013;84:650–6.PubMedGoogle Scholar
  47. 47.
    Ehrlich DJ, Walker RH. Functional neuroimaging and chorea: a systematic review. J Clin Mov Disord. 2017;4:8.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Cui R, You H, Niu N, Li F. FDG PET brain scan demonstrated glucose hypometabolism of bilateral caudate nuclei and putamina in a patient with chorea-acanthocytosis. Clin Nucl Med. 2015;40:979–80.PubMedGoogle Scholar
  49. 49.
    Tanaka M, Hirai S, Kondo S, Sun X, Nakagawa T, Tanaka S, et al. Cerebral hypoperfusion and hypometabolism with altered striatal signal intensity in chorea-acanthocytosis: a combined PET and MRI study. Mov Disord. 1998;13:100–7.PubMedGoogle Scholar
  50. 50.
    Brockmann K, Reimold M, Globas C, Hauser TK, Walter U, Rolfs A, et al. PET and MRI reveal early evidence of neurodegeneration in spinocerebellar ataxia type 17. J Nucl Med. 2018;53:1074–81.Google Scholar
  51. 51.
    Weindl A, Kuwert T, Leenders KL, Poremba M, GräFin von Einsiedel H, Antonini A, et al. Increased striatal glucose consumption in sydenham’s chorea. Mov Disord. 1993;8:437–44.PubMedGoogle Scholar
  52. 52.
    Varrone A, Asenbaum S, Vander BT, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F] FDG, Version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103–10.PubMedGoogle Scholar
  53. 53.
    Booth HDE, Hirst WD, Wade-Martins R. The role of astrocyte dysfunction in Parkinson’s disease pathogenesis. Trends Neurosci. 2017;40:358–70.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018;135:1–26.Google Scholar
  55. 55.
    Schmidt K, Lucignani G, Moresco RM, Rizzo G, Gilardi MC, Messa C, et al. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1992;12:823–34.PubMedGoogle Scholar
  56. 56.
    Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 2014;9:129–40.PubMedGoogle Scholar
  57. 57.
    Feigin A, Fukuda M, Dhawan V, Przedborski S, Jackson-Lewis V, Mentis MJ, et al. Metabolic correlates of levodopa response in Parkinson’s disease. Neurology. 2001;57:2083–8.PubMedGoogle Scholar
  58. 58.
    Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim H, et al. [18 F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 2017;20(3):393–5.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University HospitalKarolinska InstitutetStockholmSweden
  2. 2.Department of NeurologyKarolinska University HospitalStockholmSweden

Personalised recommendations