Clinical Applications of Non-18F-FDG PET/CT Tracers in Brain Imaging

  • Vincenzo MilitanoEmail author
  • Christine Tang
  • Demetrio Arico’
  • Claudio Giardina
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)


In the last decade, many tracers have been introduced to overcome some limitations of 18F-FDG in brain imaging including large neutral amino acid tracers 11C-methionine [11C-MET], 18F-fluoroethyl-tyrosine [18F-FET], 18F-fluorodopa [18F-DOPA] and 18F-choline [18FCH] and hypoxia tracers as 18F-fluoromisonidazole [18F-MISO] and 18F-Fluoroazomycin arabinofuranoside [18F-FAZA]. Most of these tracers have been specifically developed for brain tumour imaging and will be better described in the dedicated tumour section. In the present review, we will provide a brief introduction of some clinical data on their main advantages and limitations.


  1. 1.
    Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications. J Nucl Med. 2001;42:432–45.PubMedGoogle Scholar
  2. 2.
    Minamimoto R, Saginoya T, Kondo C, Tomura N, Ito K, et al. Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One. 2015;10(7):e0132515.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Stober B, Tanase U, Herz M, Seidl C, Schwaiger M, Senekowitsch-Schmidtke R. Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging. 2006;33:932–9.PubMedGoogle Scholar
  4. 4.
    Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A, et al. Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging. 2003;30:868–73.PubMedGoogle Scholar
  5. 5.
    Spaeth N, Wyss MT, Pahnke J, Biollaz G, Lutz A, Goepfert K, et al. Uptake of 18F-fluorocholine18F-fluoro-ethyl-L-tyrosine and18F-fluoro-2-deoxyglucose in F98 gliomas in the rat. Eur J Nucl Med Mol Imaging. 2006;33:673–82.PubMedGoogle Scholar
  6. 6.
    Kubota R, Kubota K, Yamada S, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med\. 1995;36:484–92.PubMedGoogle Scholar
  7. 7.
    Utriainen M, Komu M, Vuorinen V, et al. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol. 2003;62:329–38.PubMedGoogle Scholar
  8. 8.
    Pirotte B, Goldman S, Van Bogaert P, et al. Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery. 2005;57(1 Suppl):128–39.PubMedGoogle Scholar
  9. 9.
    Pirotte BJ, Levivier M, Goldman S, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery. 2009;64:471–81.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18(9):1199–208.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.PubMedGoogle Scholar
  12. 12.
    Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, Ceccon G, Dunkl V, Weinzierl M, Stoffel M, Sabel M, Fink GR, Shah NJ, Langen K-J. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol. 2015;17(9):1293–300.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Rapp M, Heinzel A, Galldiks N, Stoffels G, Felsberg J, Ewelt C, Sabel M, Steiger HJ, Reifenberger G, Beez T, Coenen HH, Floeth FW, Langen K-J. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med. 2013;54(2):229–35.PubMedGoogle Scholar
  14. 14.
    Muoio B, Giovanella L, Treglia G. Recent developments of 18F-FET PET in neuro-oncology. Curr Med Chem. 2018;25(26):3061–73.PubMedGoogle Scholar
  15. 15.
    Pöpperl G, Kreth FW, Mehrkens JH, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34(12):1933–42.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Pauleit D, Floeth F, Hamacher K, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(Pt 3):678–87.Google Scholar
  17. 17.
    Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, Neumaier B, Shah NJ, Langen KJ, Galldiks N. Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2018;45(3):443–51.PubMedGoogle Scholar
  18. 18.
    Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, et al. Prognostic value of 18F-FET PET and MRI in low-grade glioma. J Nucl Med. 2007;48:519–27.PubMedGoogle Scholar
  19. 19.
    Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, et al. 18F-FET PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med. 2011;52(6):856–64.PubMedGoogle Scholar
  20. 20.
    Rufini V, Treglia G, Montravers F, Giordano A. Diagnostic accuracy of [18F]DOPA PET and PET/CT in patients with neuroendocrine tumors: a meta-analysis. Eur J Nucl Med Mol Imaging. 2013;39(7):1144–53.Google Scholar
  21. 21.
    Ibrahim N, Kusmirek J, Struck AF, Floberg JM, Perlman SB, Gallagher C, Hall LT. The sensitivity and specificity of F-DOPA PET in a movement disorder clinic. Am J Nucl Med Mol Imaging. 2016;6(1):102–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Struck AF, Hall LT, Kusmirek JE, Gallagher CL, Floberg JM, Jaskowiak CJ, Perlman SB. (18)F-DOPA PET with and without MRI fusion, a receiver operator characteristics comparison. Am J Nucl Med Mol Imaging. 2012;2(4):475–82.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Calabria FF, Chiaravalloti A, Jaffrain-Rea ML, Zinzi M, Sannino P, Minniti G, Rubello D, Schillaci O. 18F-DOPA PET/CT physiological distribution and pitfalls. Clin Nucl Med. 2016;41(10):753–60.PubMedGoogle Scholar
  24. 24.
    Calabria F, Cascini GL. Current status of 18F-DOPA PET imaging in the detection of brain tumor recurrence. Hell J Nucl Med. 2015;18(2):152–6.PubMedGoogle Scholar
  25. 25.
    Kwee SA, Coel MN, Lim J, Ko JP. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging. 2004;14(3):285–9.PubMedGoogle Scholar
  26. 26.
    Hara T, Kondo T, Hara T, Kosaka N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg. 2003;99(3):474–9.PubMedGoogle Scholar
  27. 27.
    Giovacchini G, Fallanca F, Landoni C, et al. C-11 choline versus F-18 fluorodeoxyglucose for imaging meningiomas: an initial experience. Clin Nucl Med. 2009;34(1):7–10.PubMedGoogle Scholar
  28. 28.
    Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN. Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18fluorocholine PET. Radiology. 2007;244(2):557–65.PubMedGoogle Scholar
  29. 29.
    Grosu AL, Piert M, Weber WA, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol. 2005;181(8):483–99.PubMedGoogle Scholar
  30. 30.
    Huang Z, Zuo C, Guan Y, et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun. 2008;29(4):354–8.PubMedGoogle Scholar
  31. 31.
    Rockwell S, Dobrucki IT, Kim EY, Tucker Marrison S, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9(4):442–58.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cherk MH, Foo SS, Poon AM, et al. Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-Fluoromisonidazole and 18F-FDG PET. J Nucl Med. 2006;47(12):1921–6.PubMedGoogle Scholar
  33. 33.
    Lewis JS, Welch MJ. PET imaging of hypoxia. Q J Nucl Med. 2001;45(2):183–8.PubMedGoogle Scholar
  34. 34.
    Souvatzoglou M, Grosu AL, Roper B, et al. Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging. 2007;34(10):1566–75.PubMedGoogle Scholar
  35. 35.
    Rajendran JG, Krohn KA. F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med. 2015;45(2):151–62.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Shetty D, Jeong JM, Shim H. Stroma targeting nuclear imaging and radiopharmaceuticals. Int J Mol Imaging. 2012;2012:817682.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Abolmaali N, Haase R, Koch A, Zips D, Steinbach J, Baumann M, et al. Two or four hour [(1)(8)F]FMISO-PET in HNSCC. When is the contrast best? Nuklearmedizin. 2011;50(1):22–7.PubMedGoogle Scholar
  38. 38.
    Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med. 1992;33(12):2133–7.PubMedGoogle Scholar
  39. 39.
    Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, Peters LJ. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans–Tasman Radiation Oncology Group study. J Clin Oncol. 2006;24(13):2098–104.PubMedGoogle Scholar
  40. 40.
    Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med. 2007;37(6):451–61.PubMedGoogle Scholar
  41. 41.
    Postema EJ, McEwan AJ, Riauka TA, Kumar P, Richmond DA, Abrams DN, et al. Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging. 2009;36(10):1565–73.PubMedGoogle Scholar
  42. 42.
    Busk M, Horsman MR, Jakobsen S, Bussink J, van der Kogel A, Overgaard J. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging. 2008;35(12):2294–303.PubMedGoogle Scholar
  43. 43.
    Quartuccio N, Asselin M-C. The validation path of hypoxia PET imaging: focus on brain tumours. Curr Med Chem. 2018;25(26):3074–95.PubMedGoogle Scholar
  44. 44.
    Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, Fonti C, Lodi F, Mattioli S, Fanti S. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging. 2014;4(4):365–84.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vincenzo Militano
    • 1
    Email author
  • Christine Tang
    • 1
  • Demetrio Arico’
    • 2
  • Claudio Giardina
    • 3
  1. 1.Institute of Nuclear MedicineUniversity College of London HospitalLondonUK
  2. 2.Department of Nuclear MedicineHumanitas Oncological Centre of CataniaCataniaItaly
  3. 3.Department of RadiologyASP of Messina – Hospital of TaorminaTaorminaItaly

Personalised recommendations