Skip to main content

Target Coding for Extreme Learning Machine

  • Conference paper
  • First Online:
Proceedings of ELM-2017 (ELM 2017)

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 10))

Included in the following conference series:

  • 312 Accesses

Abstract

Target coding is an indispensable part of supervised learning. Currently, the assumption of the most popular target coding like one-hot (one-of-K) coding is that targets are independent. However, this assumption is limited due to the complex relationship between targets. In this paper, we will explore the effects of kinds of target coding methods on the performance of Extreme Learning Machine Classifiers (ELM-C). Linearly independent coding (e.g., one-of-k coding, Hadamard coding) and linearly dependent coding (e.g., ordinal coding, binary coding) are analyzed and compared. The experimental results on OCR letter dataset show that different target coding will indeed affect the performance of the same classifier.

D. Cui—This work is supported by Delta Joint Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasun, L.L.C., Yang, Y., Huang, G.-B., Zhang, Z.: Dimension reduction with extreme learning machine. IEEE Trans. Image Process. 25(8), 3906–3918 (2016)

    Article  MathSciNet  Google Scholar 

  2. Cui, D., Kasun, L.L.C., Huang, G.-B., Zhang, G., Han, W.: Elmnet: feature learning using extreme learning machines. In: International Conference on Image Processing, pp. 1857–1861. IEEE (2017)

    Google Scholar 

  3. Wang, S., Deng, C., Lin, W., Huang, G.-B., Zhao, B.: NMF-based image quality assessment using extreme learning machine. IEEE Trans. Cybern. 47(1), 232–243 (2017)

    Article  Google Scholar 

  4. Omlin, C.W., Giles, C.L.: Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants. Neural Comput. 8(4), 675–696 (1996)

    Article  Google Scholar 

  5. Huang, G., Huang, G.-B., Song, S., You, K.: Trends in extreme learning machines: a review. Neural Netw. 61, 32–48 (2015)

    Article  Google Scholar 

  6. Golomb, S.W., Baumert, L.D.: The search for hadamard matrices. Am. Math. Monthly 70(1), 12–17 (1963)

    Article  MathSciNet  Google Scholar 

  7. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. Elsevier (1977)

    Google Scholar 

  8. Yang, S., Luo, P., Loy, C.C., Shum, K.W., Tang, X.: Deep representation learning with target coding. In: AAAI, pp. 3848–3854 (2015)

    Google Scholar 

  9. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  10. Huang, G.-B., Siew, C.-K.: Extreme learning machine: RBF network case. In: ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, vol. 2, pp. 1029–1036. IEEE (2004)

    Google Scholar 

  11. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2(2), 107–122 (2011)

    Article  Google Scholar 

  12. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)

    Article  Google Scholar 

  13. Wang, B., Zhao, W., Du, Y., Zhang, G., Yang, Y.: Prediction of fatigue stress concentration factor using extreme learning machine. Comput. Mater. Sci. 125, 136–145 (2016)

    Article  Google Scholar 

  14. Cui, D., Huang, G.-B., Liu, T.: Smile detection using pair-wise distance vector and extreme learning machine. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2298–2305. IEEE (2016)

    Google Scholar 

  15. Hamming, R.W.: Coding and Theory. Prentice-Hall (1980)

    Google Scholar 

  16. Rappaport, T.S., et al.: Wireless Communications: Principles and Practice, vol. 2. Prentice Hall PTR, New Jersey (1996)

    Google Scholar 

  17. Hsu, D.J., Kakade, S.M., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, pp. 772–780 (2009)

    Google Scholar 

  18. Cisse, M.M., Usunier, N., Artieres, T., Gallinari, P.: Robust bloom filters for large multilabel classification tasks. In: Advances in Neural Information Processing Systems, pp. 1851–1859 (2013)

    Google Scholar 

  19. Kassel, R.: The MIT on-line character database. http://ai.stanford.edu/~btaskar/ocr

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongshun Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, D., Hu, K., Zhang, G., Han, W., Huang, GB. (2019). Target Coding for Extreme Learning Machine. In: Cao, J., Vong, C., Miche, Y., Lendasse, A. (eds) Proceedings of ELM-2017. ELM 2017. Proceedings in Adaptation, Learning and Optimization, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-01520-6_27

Download citation

Publish with us

Policies and ethics