Skip to main content

Memristive Extreme Learning Machine: A Neuromorphic Implementation

  • Conference paper
  • First Online:
Proceedings of ELM-2017 (ELM 2017)

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 10))

Included in the following conference series:

  • 329 Accesses

Abstract

Neuromorphic computation has been a hot research area over the past few years. Memristor, as one of the neuromorphic computation materials memorizes the conductance value and is able to adapt it according to changing voltages. This paper pioneers a neuromorphic computing paradigm implementation (through memristor) for Extreme Learning Machine (ELM), which is one of most popular machine learning methods. By simulating the biological synapses with memristors and combining the memory property of memristor with high-efficient processing ability in ELM, a three-layer ELM model for classification is constructed. We represent the ELM network weights through memristive conductance values. The conductance values (network weights) are updated through tuning the voltages. Experimental results over the Iris dataset show that the memristor-based ELM achieves the same level performance as the one implemented via traditional software, and exhibits great potential that ELM can be implemented in neromorphic computation paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakkum, P., Skadron, K.: Accelerating SQL database operations on a GPU with CUDA. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, pp. 94–103. ACM (2010)

    Google Scholar 

  2. Blake, C., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  3. Bolz, J., Farmer, I., Grinspun, E., Schröoder, P.: Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans. Graph. (TOG) 22(3), 917–924 (2003)

    Article  Google Scholar 

  4. Chakravarty, M.M., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating haskell array codes with multicore GPUs. In: Proceedings of the sixth workshop on Declarative aspects of multicore programming, pp. 3–14. ACM (2011)

    Google Scholar 

  5. Diamos, G.F., Wu, H., Lele, A., Wang, J.: Efficient relational algebra algorithms and data structures for GPU. Georgia Institute of Technology, Technical report (2012)

    Google Scholar 

  6. Eryilmaz, S.B., Kuzum, D., Jeyasingh, R., Kim, S., BrightSky, M., Lam, C., Wong, H.-S.P.: Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array, arXiv preprint arXiv:1406.4951 (2014)

  7. Furber, S., Temple, S.: Neural systems engineering. J. R. Soc. Interface 4(13), 193–206 (2007)

    Article  Google Scholar 

  8. Grauer-Gray, S., Kambhamettu, C., Palaniappan, K.: GPU implementation of belief propagation using CUDA for cloud tracking and reconstruction. In: 2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008), pp. 1–4. IEEE (2008)

    Google Scholar 

  9. Hartley, T.D., Catalyurek, U., Ruiz, A., Igual, F., Mayo, R., Ujaldon, M.: Biomedical image analysis on a cooperative cluster of GPUs and multicores. In: ACM International Conference on Supercomputing 25th Anniversary Volume, pp. 413–423. ACM (2014)

    Google Scholar 

  10. Hetherington, T.H., Rogers, T.G., Hsu, L., O’Connor, M., Aamodt, T.M.: Characterizing and evaluating a key-value store application on heterogeneous CPU-GPU systems. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 88–98. IEEE (2012)

    Google Scholar 

  11. Hu, S., Liu, Y., Liu, Z., Chen, T., Wang, J., Yu, Q., Deng, L., Yin, Y., Hosaka, S.: Associative memory realized by a reconfigurable memristive hopfield neural network. Nature commun. 6, 7522 (2015)

    Article  Google Scholar 

  12. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70, 3056–3062 (2007)

    Article  Google Scholar 

  13. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(1618), 3460–3468 (2008)

    Article  Google Scholar 

  14. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  15. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  16. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  17. Kuzum, D., Jeyasingh, R., Lee, B.C., Wong, H.: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5), 2179–2186 (2012)

    Article  Google Scholar 

  18. Lieberman, M.D., Sankaranarayanan, J., Samet, H.: A fast similarity join algorithm using graphics processing units. In: IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 1111–1120. IEEE (2008)

    Google Scholar 

  19. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  20. Mosegaard, J., Sørensen, T.S.: Real-time deformation of detailed geometry based on mappings to a less detailed physical simulation on the GPU. In: IPT/EGVE, pp. 105–111 (2005)

    Google Scholar 

  21. Nickolls, J., Dally, W.J.: The GPU computing era. IEEE micro, 30(2) (2010)

    Article  Google Scholar 

  22. Pan, X., Shuai, Y., Wu, C., Luo, W., Sun, X., Zeng, H., Zhou, S., Böttger, R., Ou, X., Mikolajick, T.: Rectifying filamentary resistive switching in ion-exfoliated linbo3 thin films. Appl. Phys. Lett. 108(3), 032904 (2016)

    Article  Google Scholar 

  23. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010)

    Article  Google Scholar 

  24. Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015)

    Article  Google Scholar 

  25. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  26. Trancoso, P., Othonos, D., Artemiou, A.: Data parallel acceleration of decision support queries using cell/be and GPUs. In: Proceedings of the 6th ACM Conference on Computing Frontiers, pp. 117–126. ACM (2009)

    Google Scholar 

  27. Trimberger, S., Carberry, D., Johnson, A., Wong, J.: A time-multiplexed FPGA. In: Proceedings the 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 22–28. IEEE (1997)

    Google Scholar 

  28. Volk, P.B., Habich, D., Lehner, W.: GPU-based speculative query processing for database operations. In: ADMS@ VLDB, 2010, pp. 51–60 (2010)

    Google Scholar 

  29. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L. et al. (2019). Memristive Extreme Learning Machine: A Neuromorphic Implementation. In: Cao, J., Vong, C., Miche, Y., Lendasse, A. (eds) Proceedings of ELM-2017. ELM 2017. Proceedings in Adaptation, Learning and Optimization, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-01520-6_11

Download citation

Publish with us

Policies and ethics