Advertisement

A New Scheme for the Evaluation of Socio-Economic Performance of Organizations: A Well-Being Indicator Approach

  • Silvia Di CesareEmail author
  • Alfredo Cartone
  • Luigia Petti
Chapter
  • 134 Downloads
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)

Abstract

In this paper we propose to evaluate socio-economic performance of organizations through a well-being approach. Our aim is to build a composite indicator for product socio-economic impacts. As composite indicators are useful to simplify the behaviour of complex phenomena, a methodology based on well-being indicators is developed in the scope of the affected population. The organization actions are connected to the weights of the well-being indicators based on the effective links existing between these actions and the well-being dimensions. Thereafter, the links between variables from social reporting and life cycle inventory indicators are defined by conducting a Delphi expert consensus method on the basis of the “Wisdom of crowds” theory.

References

  1. 1.
    United Nations Environment Programme and Society for Environmental Toxicology and Chemistry. Guidelines for Social life cycle assessment of products. Paris; 2009.Google Scholar
  2. 2.
    UNEP/SETAC. The methodological sheets for sub-categories in social life cycle assessment (S-LCA). Life cycle initiative, UNEP-SETAC.Google Scholar
  3. 3.
    Martínez-Blanco J, Lehmann A, Chang YJ, Finkbeiner M. Social organizational LCA (SOLCA)—a new approach for implementing social LCA. Int J Life Cycle Assess. 2015;20(11):1586–99.CrossRefGoogle Scholar
  4. 4.
    UNEP/SETAC. Guidance on organizational life cycle assessment, 2015.Google Scholar
  5. 5.
    Chhipi-Shrestha GK, Hewage K, Sadiq R. Socializing’sustainability: a critical review on current development status of social life cycle impact assessment method. Clean Techn Environ Policy. 2015;17(3):579–96.CrossRefGoogle Scholar
  6. 6.
    Garrido SR, Parent J, Beaulieu L, Revéret JP. A literature review of type I S-LCA—making the logic underlying methodological choices explicit. Int J Life Cycle Assess. 2018;23(3):432–44.CrossRefGoogle Scholar
  7. 7.
    Arpacana S, Salhofer S. Application of a methodology for the social life cycle assessment of recycling systems in low income countries: three Peruvian case studies. Int J Life Cycle Assess. 2013;18(5):1116–28.CrossRefGoogle Scholar
  8. 8.
    Boons F, Lüdeke-Freund F. Business models for sustainable innovation: state-of-the-art and steps towards a research agenda. J Clean Prod. 2013;45:9–19.CrossRefGoogle Scholar
  9. 9.
    Murray CJL, Lopez AD. Evidence-based health policy--lessons from the global burden of disease study. Science. 1996;274(5288):740–3.CrossRefGoogle Scholar
  10. 10.
    Goedkooop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R. ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, Report I: Characterisation, First edition (version 1.08).Google Scholar
  11. 11.
    Krewitt W, Pennington DW, Olsen SI, Crettaz P, Jolliet O. Indicators for human toxicity in life cycle impact assessment. Position paper for SETAC-Europe WIA2 task group on human toxicity, Version: January 7, 2002.Google Scholar
  12. 12.
    Mather S. Integrating participatory approaches into social life cycle assessment: the S-LCA participatory approach. Int J Life Cycle Assess. 2014;19(8):1506–14.CrossRefGoogle Scholar
  13. 13.
    Foolmaun RK, Ramjeeawon T. Comparative life cycle assessment and social life cycle assessment of used polyethylene terephthalate (PET) bottles in Mauritius. Int J Life Cycle Assess. 2013;18(1):155–71.CrossRefGoogle Scholar
  14. 14.
    Pampalon R, Raymond G. A deprivation index for health and welfare planning in Quebec. Chron Dis Inj Can. 2000;21(3):104.Google Scholar
  15. 15.
    ISTAT. Bes 2015: Il benessere equo e sostenibile in Italia, Istituto Nazionale di Statistica, 2015.Google Scholar
  16. 16.
    Stiglitz JE, Sen AK, Fitoussi JP. Rapport de la Commission sur la mesure des performances économiques et du progrès social, 2009.Google Scholar
  17. 17.
    Mazziotta M, Pareto A. A non-compensatory composite index for measuring well-being over time, cogito. Multidisciplinary research journal, Vol. 5, No. 4, 2013, p. 93–104.Google Scholar
  18. 18.
    Garrabè M, Feschet P. Un cas particulier: l’ACV sociale des capacités. ACV sociales. Effets socio-économiques des chaines de valeurs, FruiTrop Thema, Montpellier (France), 2013, p. 87–118.Google Scholar
  19. 19.
    Sen A. Social choice theory: a re-examination. Econometrica. 1977;45:53–89.CrossRefGoogle Scholar
  20. 20.
    Andrews E, Lesage P, Benoit C, Parent J, Norris G, Revéret JP. Life cycle attribute assessment. J Ind Ecol. 2009;13(4):565–78.CrossRefGoogle Scholar
  21. 21.
    Norris GA. Social impacts in product life cycles-towards life cycle attribute assessment. Int J Life Cycle Assess. 2006;11(1):97–104.CrossRefGoogle Scholar
  22. 22.
    Macombe C. Researcher school book: social evaluation of the life cycle, application to the agriculture and Agri-food sectors. 2017.Google Scholar
  23. 23.
    Macombe C, Lagarde V, Falque A, Social LCAs. Socioeconomic effects in value chains, 1srt Editi. ed. FruiTrop, CIRAD. 2013.Google Scholar
  24. 24.
    Hutchins MJ, Sutherland JW. An exploration of measures of social sustainability and their application to supply chain decisions. J Clean Prod. 2008;16(15):1688–98.CrossRefGoogle Scholar
  25. 25.
    Neugebauer S. Enhancing life cycle sustainability assessment, doctoral thesis. 2016.Google Scholar
  26. 26.
    Jorm AF. Using the Delphi expert consensus method in mental health research. Aust N Z J Psychiatr. 2015;49(10):887–97.CrossRefGoogle Scholar
  27. 27.
    Surowiecki J. The wisdom of crowds. New York: Anchor, cop; 2004. p. 2004.Google Scholar
  28. 28.
    Léger B, Naud O. Experimenting statecharts for multiple experts knowledge elicitation in agriculture. Expert Syst Appl. 2009;36(8):11296–303.CrossRefGoogle Scholar
  29. 29.
    Funtowicz SO, Ravetz JR. Uncertainty, complexity and post-normal science. Environ Toxicol Chem: Int J. 1994;13(12):1881–5.CrossRefGoogle Scholar
  30. 30.
    Decancq K, Lugo MA. Weights in multidimensional indices of wellbeing: an overview. Econ Rev. 2013;32(1):7–34.CrossRefGoogle Scholar
  31. 31.
    Jolliffe IT. Principal component analysis and factor analysis, principal component analysis; 2002. p. 150–66.Google Scholar
  32. 32.
    Cartone A, Postiglione P. Le componenti principali pesate geograficamente per la definizione di indicatori compositi locali, Rivista di economia e statistica del territorio. 2016. 33, 52.Google Scholar
  33. 33.
    Fusco E, Vidoli F, Sahoo BK. Spatial heterogeneity in composite indicator: A methodological proposal. Omega. 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Silvia Di Cesare
    • 1
    • 2
    Email author
  • Alfredo Cartone
    • 1
  • Luigia Petti
    • 1
  1. 1.Department of Economic StudiesUniversity “G. d’Annunzio”PescaraItaly
  2. 2.CIRAD, UPR GECOMontpellier Cedex 5France

Personalised recommendations